Solve for x
x>\frac{23}{63}
Graph
Share
Copied to clipboard
24-3\left(1-x\right)<72x-2\left(3x+1\right)
Multiply both sides of the equation by 12, the least common multiple of 4,6. Since 12 is positive, the inequality direction remains the same.
24-3+3x<72x-2\left(3x+1\right)
Use the distributive property to multiply -3 by 1-x.
21+3x<72x-2\left(3x+1\right)
Subtract 3 from 24 to get 21.
21+3x<72x-6x-2
Use the distributive property to multiply -2 by 3x+1.
21+3x<66x-2
Combine 72x and -6x to get 66x.
21+3x-66x<-2
Subtract 66x from both sides.
21-63x<-2
Combine 3x and -66x to get -63x.
-63x<-2-21
Subtract 21 from both sides.
-63x<-23
Subtract 21 from -2 to get -23.
x>\frac{-23}{-63}
Divide both sides by -63. Since -63 is negative, the inequality direction is changed.
x>\frac{23}{63}
Fraction \frac{-23}{-63} can be simplified to \frac{23}{63} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}