Evaluate
\frac{71}{40}=1.775
Factor
\frac{71}{2 ^ {3} \cdot 5} = 1\frac{31}{40} = 1.775
Share
Copied to clipboard
\frac{8}{4}-\frac{1}{4}-\frac{-1}{8}-\frac{1}{10}
Convert 2 to fraction \frac{8}{4}.
\frac{8-1}{4}-\frac{-1}{8}-\frac{1}{10}
Since \frac{8}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{4}-\frac{-1}{8}-\frac{1}{10}
Subtract 1 from 8 to get 7.
\frac{7}{4}-\left(-\frac{1}{8}\right)-\frac{1}{10}
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
\frac{7}{4}+\frac{1}{8}-\frac{1}{10}
The opposite of -\frac{1}{8} is \frac{1}{8}.
\frac{14}{8}+\frac{1}{8}-\frac{1}{10}
Least common multiple of 4 and 8 is 8. Convert \frac{7}{4} and \frac{1}{8} to fractions with denominator 8.
\frac{14+1}{8}-\frac{1}{10}
Since \frac{14}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{15}{8}-\frac{1}{10}
Add 14 and 1 to get 15.
\frac{75}{40}-\frac{4}{40}
Least common multiple of 8 and 10 is 40. Convert \frac{15}{8} and \frac{1}{10} to fractions with denominator 40.
\frac{75-4}{40}
Since \frac{75}{40} and \frac{4}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{71}{40}
Subtract 4 from 75 to get 71.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}