Solve for a
a=1
Share
Copied to clipboard
2-\frac{1}{3}a-\frac{1}{3}\left(-1\right)=2
Use the distributive property to multiply -\frac{1}{3} by a-1.
2-\frac{1}{3}a+\frac{1}{3}=2
Multiply -\frac{1}{3} and -1 to get \frac{1}{3}.
\frac{6}{3}-\frac{1}{3}a+\frac{1}{3}=2
Convert 2 to fraction \frac{6}{3}.
\frac{6+1}{3}-\frac{1}{3}a=2
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{7}{3}-\frac{1}{3}a=2
Add 6 and 1 to get 7.
-\frac{1}{3}a=2-\frac{7}{3}
Subtract \frac{7}{3} from both sides.
-\frac{1}{3}a=\frac{6}{3}-\frac{7}{3}
Convert 2 to fraction \frac{6}{3}.
-\frac{1}{3}a=\frac{6-7}{3}
Since \frac{6}{3} and \frac{7}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}a=-\frac{1}{3}
Subtract 7 from 6 to get -1.
a=-\frac{1}{3}\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
a=\frac{-\left(-3\right)}{3}
Express -\frac{1}{3}\left(-3\right) as a single fraction.
a=\frac{3}{3}
Multiply -1 and -3 to get 3.
a=1
Divide 3 by 3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}