Evaluate
\frac{205}{128}=1.6015625
Factor
\frac{5 \cdot 41}{2 ^ {7}} = 1\frac{77}{128} = 1.6015625
Share
Copied to clipboard
\frac{4}{2}-\frac{1}{2}+\frac{1}{8}-\frac{1}{32}+\frac{1}{128}
Convert 2 to fraction \frac{4}{2}.
\frac{4-1}{2}+\frac{1}{8}-\frac{1}{32}+\frac{1}{128}
Since \frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}+\frac{1}{8}-\frac{1}{32}+\frac{1}{128}
Subtract 1 from 4 to get 3.
\frac{12}{8}+\frac{1}{8}-\frac{1}{32}+\frac{1}{128}
Least common multiple of 2 and 8 is 8. Convert \frac{3}{2} and \frac{1}{8} to fractions with denominator 8.
\frac{12+1}{8}-\frac{1}{32}+\frac{1}{128}
Since \frac{12}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{13}{8}-\frac{1}{32}+\frac{1}{128}
Add 12 and 1 to get 13.
\frac{52}{32}-\frac{1}{32}+\frac{1}{128}
Least common multiple of 8 and 32 is 32. Convert \frac{13}{8} and \frac{1}{32} to fractions with denominator 32.
\frac{52-1}{32}+\frac{1}{128}
Since \frac{52}{32} and \frac{1}{32} have the same denominator, subtract them by subtracting their numerators.
\frac{51}{32}+\frac{1}{128}
Subtract 1 from 52 to get 51.
\frac{204}{128}+\frac{1}{128}
Least common multiple of 32 and 128 is 128. Convert \frac{51}{32} and \frac{1}{128} to fractions with denominator 128.
\frac{204+1}{128}
Since \frac{204}{128} and \frac{1}{128} have the same denominator, add them by adding their numerators.
\frac{205}{128}
Add 204 and 1 to get 205.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}