Solve for k
k = \frac{99}{7} = 14\frac{1}{7} \approx 14.142857143
Share
Copied to clipboard
2-\left(k-\left(6k-1-\left(-2k\right)\right)\right)=100
To find the opposite of 1-2k, find the opposite of each term.
2-\left(k-\left(6k-1+2k\right)\right)=100
The opposite of -2k is 2k.
2-\left(k-\left(8k-1\right)\right)=100
Combine 6k and 2k to get 8k.
2-\left(k-8k-\left(-1\right)\right)=100
To find the opposite of 8k-1, find the opposite of each term.
2-\left(k-8k+1\right)=100
The opposite of -1 is 1.
2-\left(-7k+1\right)=100
Combine k and -8k to get -7k.
2-\left(-7k\right)-1=100
To find the opposite of -7k+1, find the opposite of each term.
2+7k-1=100
The opposite of -7k is 7k.
1+7k=100
Subtract 1 from 2 to get 1.
7k=100-1
Subtract 1 from both sides.
7k=99
Subtract 1 from 100 to get 99.
k=\frac{99}{7}
Divide both sides by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}