Evaluate
-\frac{21}{5}=-4.2
Factor
-\frac{21}{5} = -4\frac{1}{5} = -4.2
Share
Copied to clipboard
2-\left(-\frac{4}{5}-\left(-3\right)+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Subtract 7 from 4 to get -3.
2-\left(-\frac{4}{5}+3+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
The opposite of -3 is 3.
2-\left(-\frac{4}{5}+\frac{15}{5}+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Convert 3 to fraction \frac{15}{5}.
2-\left(\frac{-4+15}{5}+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Since -\frac{4}{5} and \frac{15}{5} have the same denominator, add them by adding their numerators.
2-\left(\frac{11}{5}+\frac{1}{9}-\left(\frac{10}{9}-6\right)\right)+2-1
Add -4 and 15 to get 11.
2-\left(\frac{99}{45}+\frac{5}{45}-\left(\frac{10}{9}-6\right)\right)+2-1
Least common multiple of 5 and 9 is 45. Convert \frac{11}{5} and \frac{1}{9} to fractions with denominator 45.
2-\left(\frac{99+5}{45}-\left(\frac{10}{9}-6\right)\right)+2-1
Since \frac{99}{45} and \frac{5}{45} have the same denominator, add them by adding their numerators.
2-\left(\frac{104}{45}-\left(\frac{10}{9}-6\right)\right)+2-1
Add 99 and 5 to get 104.
2-\left(\frac{104}{45}-\left(\frac{10}{9}-\frac{54}{9}\right)\right)+2-1
Convert 6 to fraction \frac{54}{9}.
2-\left(\frac{104}{45}-\frac{10-54}{9}\right)+2-1
Since \frac{10}{9} and \frac{54}{9} have the same denominator, subtract them by subtracting their numerators.
2-\left(\frac{104}{45}-\left(-\frac{44}{9}\right)\right)+2-1
Subtract 54 from 10 to get -44.
2-\left(\frac{104}{45}+\frac{44}{9}\right)+2-1
The opposite of -\frac{44}{9} is \frac{44}{9}.
2-\left(\frac{104}{45}+\frac{220}{45}\right)+2-1
Least common multiple of 45 and 9 is 45. Convert \frac{104}{45} and \frac{44}{9} to fractions with denominator 45.
2-\frac{104+220}{45}+2-1
Since \frac{104}{45} and \frac{220}{45} have the same denominator, add them by adding their numerators.
2-\frac{324}{45}+2-1
Add 104 and 220 to get 324.
2-\frac{36}{5}+2-1
Reduce the fraction \frac{324}{45} to lowest terms by extracting and canceling out 9.
\frac{10}{5}-\frac{36}{5}+2-1
Convert 2 to fraction \frac{10}{5}.
\frac{10-36}{5}+2-1
Since \frac{10}{5} and \frac{36}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{26}{5}+2-1
Subtract 36 from 10 to get -26.
-\frac{26}{5}+\frac{10}{5}-1
Convert 2 to fraction \frac{10}{5}.
\frac{-26+10}{5}-1
Since -\frac{26}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
-\frac{16}{5}-1
Add -26 and 10 to get -16.
-\frac{16}{5}-\frac{5}{5}
Convert 1 to fraction \frac{5}{5}.
\frac{-16-5}{5}
Since -\frac{16}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{21}{5}
Subtract 5 from -16 to get -21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}