Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

6.28\times \frac{\frac{55}{2}}{10}\times \frac{1600}{1}b
Multiply 2 and 3.14 to get 6.28.
6.28\times \frac{55}{2\times 10}\times \frac{1600}{1}b
Express \frac{\frac{55}{2}}{10} as a single fraction.
6.28\times \frac{55}{20}\times \frac{1600}{1}b
Multiply 2 and 10 to get 20.
6.28\times \frac{11}{4}\times \frac{1600}{1}b
Reduce the fraction \frac{55}{20} to lowest terms by extracting and canceling out 5.
\frac{157}{25}\times \frac{11}{4}\times \frac{1600}{1}b
Convert decimal number 6.28 to fraction \frac{628}{100}. Reduce the fraction \frac{628}{100} to lowest terms by extracting and canceling out 4.
\frac{157\times 11}{25\times 4}\times \frac{1600}{1}b
Multiply \frac{157}{25} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1727}{100}\times \frac{1600}{1}b
Do the multiplications in the fraction \frac{157\times 11}{25\times 4}.
\frac{1727}{100}\times 1600b
Anything divided by one gives itself.
\frac{1727\times 1600}{100}b
Express \frac{1727}{100}\times 1600 as a single fraction.
\frac{2763200}{100}b
Multiply 1727 and 1600 to get 2763200.
27632b
Divide 2763200 by 100 to get 27632.
\frac{\mathrm{d}}{\mathrm{d}b}(6.28\times \frac{\frac{55}{2}}{10}\times \frac{1600}{1}b)
Multiply 2 and 3.14 to get 6.28.
\frac{\mathrm{d}}{\mathrm{d}b}(6.28\times \frac{55}{2\times 10}\times \frac{1600}{1}b)
Express \frac{\frac{55}{2}}{10} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}b}(6.28\times \frac{55}{20}\times \frac{1600}{1}b)
Multiply 2 and 10 to get 20.
\frac{\mathrm{d}}{\mathrm{d}b}(6.28\times \frac{11}{4}\times \frac{1600}{1}b)
Reduce the fraction \frac{55}{20} to lowest terms by extracting and canceling out 5.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{157}{25}\times \frac{11}{4}\times \frac{1600}{1}b)
Convert decimal number 6.28 to fraction \frac{628}{100}. Reduce the fraction \frac{628}{100} to lowest terms by extracting and canceling out 4.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{157\times 11}{25\times 4}\times \frac{1600}{1}b)
Multiply \frac{157}{25} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1727}{100}\times \frac{1600}{1}b)
Do the multiplications in the fraction \frac{157\times 11}{25\times 4}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1727}{100}\times 1600b)
Anything divided by one gives itself.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{1727\times 1600}{100}b)
Express \frac{1727}{100}\times 1600 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{2763200}{100}b)
Multiply 1727 and 1600 to get 2763200.
\frac{\mathrm{d}}{\mathrm{d}b}(27632b)
Divide 2763200 by 100 to get 27632.
27632b^{1-1}
The derivative of ax^{n} is nax^{n-1}.
27632b^{0}
Subtract 1 from 1.
27632\times 1
For any term t except 0, t^{0}=1.
27632
For any term t, t\times 1=t and 1t=t.