Evaluate
2\left(z+1\right)\left(z+2\right)\left(z+3\right)
Expand
2z^{3}+12z^{2}+22z+12
Share
Copied to clipboard
\left(2z+6\right)\left(z+2\right)\left(z+1\right)
Use the distributive property to multiply 2 by z+3.
\left(2z^{2}+4z+6z+12\right)\left(z+1\right)
Apply the distributive property by multiplying each term of 2z+6 by each term of z+2.
\left(2z^{2}+10z+12\right)\left(z+1\right)
Combine 4z and 6z to get 10z.
2z^{3}+2z^{2}+10z^{2}+10z+12z+12
Apply the distributive property by multiplying each term of 2z^{2}+10z+12 by each term of z+1.
2z^{3}+12z^{2}+10z+12z+12
Combine 2z^{2} and 10z^{2} to get 12z^{2}.
2z^{3}+12z^{2}+22z+12
Combine 10z and 12z to get 22z.
\left(2z+6\right)\left(z+2\right)\left(z+1\right)
Use the distributive property to multiply 2 by z+3.
\left(2z^{2}+4z+6z+12\right)\left(z+1\right)
Apply the distributive property by multiplying each term of 2z+6 by each term of z+2.
\left(2z^{2}+10z+12\right)\left(z+1\right)
Combine 4z and 6z to get 10z.
2z^{3}+2z^{2}+10z^{2}+10z+12z+12
Apply the distributive property by multiplying each term of 2z^{2}+10z+12 by each term of z+1.
2z^{3}+12z^{2}+10z+12z+12
Combine 2z^{2} and 10z^{2} to get 12z^{2}.
2z^{3}+12z^{2}+22z+12
Combine 10z and 12z to get 22z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}