Solve for y
y=1
y = \frac{9}{2} = 4\frac{1}{2} = 4.5
Graph
Share
Copied to clipboard
2\left(y^{2}-8y+16\right)+5\left(y-4\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
2y^{2}-16y+32+5\left(y-4\right)-3=0
Use the distributive property to multiply 2 by y^{2}-8y+16.
2y^{2}-16y+32+5y-20-3=0
Use the distributive property to multiply 5 by y-4.
2y^{2}-11y+32-20-3=0
Combine -16y and 5y to get -11y.
2y^{2}-11y+12-3=0
Subtract 20 from 32 to get 12.
2y^{2}-11y+9=0
Subtract 3 from 12 to get 9.
a+b=-11 ab=2\times 9=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2y^{2}+ay+by+9. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-9 b=-2
The solution is the pair that gives sum -11.
\left(2y^{2}-9y\right)+\left(-2y+9\right)
Rewrite 2y^{2}-11y+9 as \left(2y^{2}-9y\right)+\left(-2y+9\right).
y\left(2y-9\right)-\left(2y-9\right)
Factor out y in the first and -1 in the second group.
\left(2y-9\right)\left(y-1\right)
Factor out common term 2y-9 by using distributive property.
y=\frac{9}{2} y=1
To find equation solutions, solve 2y-9=0 and y-1=0.
2\left(y^{2}-8y+16\right)+5\left(y-4\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
2y^{2}-16y+32+5\left(y-4\right)-3=0
Use the distributive property to multiply 2 by y^{2}-8y+16.
2y^{2}-16y+32+5y-20-3=0
Use the distributive property to multiply 5 by y-4.
2y^{2}-11y+32-20-3=0
Combine -16y and 5y to get -11y.
2y^{2}-11y+12-3=0
Subtract 20 from 32 to get 12.
2y^{2}-11y+9=0
Subtract 3 from 12 to get 9.
y=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\times 9}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -11 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-11\right)±\sqrt{121-4\times 2\times 9}}{2\times 2}
Square -11.
y=\frac{-\left(-11\right)±\sqrt{121-8\times 9}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-11\right)±\sqrt{121-72}}{2\times 2}
Multiply -8 times 9.
y=\frac{-\left(-11\right)±\sqrt{49}}{2\times 2}
Add 121 to -72.
y=\frac{-\left(-11\right)±7}{2\times 2}
Take the square root of 49.
y=\frac{11±7}{2\times 2}
The opposite of -11 is 11.
y=\frac{11±7}{4}
Multiply 2 times 2.
y=\frac{18}{4}
Now solve the equation y=\frac{11±7}{4} when ± is plus. Add 11 to 7.
y=\frac{9}{2}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
y=\frac{4}{4}
Now solve the equation y=\frac{11±7}{4} when ± is minus. Subtract 7 from 11.
y=1
Divide 4 by 4.
y=\frac{9}{2} y=1
The equation is now solved.
2\left(y^{2}-8y+16\right)+5\left(y-4\right)-3=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
2y^{2}-16y+32+5\left(y-4\right)-3=0
Use the distributive property to multiply 2 by y^{2}-8y+16.
2y^{2}-16y+32+5y-20-3=0
Use the distributive property to multiply 5 by y-4.
2y^{2}-11y+32-20-3=0
Combine -16y and 5y to get -11y.
2y^{2}-11y+12-3=0
Subtract 20 from 32 to get 12.
2y^{2}-11y+9=0
Subtract 3 from 12 to get 9.
2y^{2}-11y=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{2y^{2}-11y}{2}=-\frac{9}{2}
Divide both sides by 2.
y^{2}-\frac{11}{2}y=-\frac{9}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-\frac{11}{2}y+\left(-\frac{11}{4}\right)^{2}=-\frac{9}{2}+\left(-\frac{11}{4}\right)^{2}
Divide -\frac{11}{2}, the coefficient of the x term, by 2 to get -\frac{11}{4}. Then add the square of -\frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{11}{2}y+\frac{121}{16}=-\frac{9}{2}+\frac{121}{16}
Square -\frac{11}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{11}{2}y+\frac{121}{16}=\frac{49}{16}
Add -\frac{9}{2} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{11}{4}\right)^{2}=\frac{49}{16}
Factor y^{2}-\frac{11}{2}y+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
y-\frac{11}{4}=\frac{7}{4} y-\frac{11}{4}=-\frac{7}{4}
Simplify.
y=\frac{9}{2} y=1
Add \frac{11}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}