Solve for x
x=-\frac{6y}{5}+2
Solve for y
y=-\frac{5x}{6}+\frac{5}{3}
Graph
Share
Copied to clipboard
6\left(y-4\right)+5x+5=-9
Multiply both sides of the equation by 3.
6y-24+5x+5=-9
Use the distributive property to multiply 6 by y-4.
6y-19+5x=-9
Add -24 and 5 to get -19.
-19+5x=-9-6y
Subtract 6y from both sides.
5x=-9-6y+19
Add 19 to both sides.
5x=10-6y
Add -9 and 19 to get 10.
\frac{5x}{5}=\frac{10-6y}{5}
Divide both sides by 5.
x=\frac{10-6y}{5}
Dividing by 5 undoes the multiplication by 5.
x=-\frac{6y}{5}+2
Divide 10-6y by 5.
6\left(y-4\right)+5x+5=-9
Multiply both sides of the equation by 3.
6y-24+5x+5=-9
Use the distributive property to multiply 6 by y-4.
6y-19+5x=-9
Add -24 and 5 to get -19.
6y+5x=-9+19
Add 19 to both sides.
6y+5x=10
Add -9 and 19 to get 10.
6y=10-5x
Subtract 5x from both sides.
\frac{6y}{6}=\frac{10-5x}{6}
Divide both sides by 6.
y=\frac{10-5x}{6}
Dividing by 6 undoes the multiplication by 6.
y=-\frac{5x}{6}+\frac{5}{3}
Divide 10-5x by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}