Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

2y^{2}-36y+162=y
Use the distributive property to multiply 2 by y^{2}-18y+81.
2y^{2}-36y+162-y=0
Subtract y from both sides.
2y^{2}-37y+162=0
Combine -36y and -y to get -37y.
y=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 2\times 162}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -37 for b, and 162 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-37\right)±\sqrt{1369-4\times 2\times 162}}{2\times 2}
Square -37.
y=\frac{-\left(-37\right)±\sqrt{1369-8\times 162}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-37\right)±\sqrt{1369-1296}}{2\times 2}
Multiply -8 times 162.
y=\frac{-\left(-37\right)±\sqrt{73}}{2\times 2}
Add 1369 to -1296.
y=\frac{37±\sqrt{73}}{2\times 2}
The opposite of -37 is 37.
y=\frac{37±\sqrt{73}}{4}
Multiply 2 times 2.
y=\frac{\sqrt{73}+37}{4}
Now solve the equation y=\frac{37±\sqrt{73}}{4} when ± is plus. Add 37 to \sqrt{73}.
y=\frac{37-\sqrt{73}}{4}
Now solve the equation y=\frac{37±\sqrt{73}}{4} when ± is minus. Subtract \sqrt{73} from 37.
y=\frac{\sqrt{73}+37}{4} y=\frac{37-\sqrt{73}}{4}
The equation is now solved.
2y^{2}-36y+162=y
Use the distributive property to multiply 2 by y^{2}-18y+81.
2y^{2}-36y+162-y=0
Subtract y from both sides.
2y^{2}-37y+162=0
Combine -36y and -y to get -37y.
2y^{2}-37y=-162
Subtract 162 from both sides. Anything subtracted from zero gives its negation.
\frac{2y^{2}-37y}{2}=-\frac{162}{2}
Divide both sides by 2.
y^{2}-\frac{37}{2}y=-\frac{162}{2}
Dividing by 2 undoes the multiplication by 2.
y^{2}-\frac{37}{2}y=-81
Divide -162 by 2.
y^{2}-\frac{37}{2}y+\left(-\frac{37}{4}\right)^{2}=-81+\left(-\frac{37}{4}\right)^{2}
Divide -\frac{37}{2}, the coefficient of the x term, by 2 to get -\frac{37}{4}. Then add the square of -\frac{37}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{37}{2}y+\frac{1369}{16}=-81+\frac{1369}{16}
Square -\frac{37}{4} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{37}{2}y+\frac{1369}{16}=\frac{73}{16}
Add -81 to \frac{1369}{16}.
\left(y-\frac{37}{4}\right)^{2}=\frac{73}{16}
Factor y^{2}-\frac{37}{2}y+\frac{1369}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{37}{4}\right)^{2}}=\sqrt{\frac{73}{16}}
Take the square root of both sides of the equation.
y-\frac{37}{4}=\frac{\sqrt{73}}{4} y-\frac{37}{4}=-\frac{\sqrt{73}}{4}
Simplify.
y=\frac{\sqrt{73}+37}{4} y=\frac{37-\sqrt{73}}{4}
Add \frac{37}{4} to both sides of the equation.