Solve for y
y = \frac{9}{8} = 1\frac{1}{8} = 1.125
Graph
Share
Copied to clipboard
\left(2y+8\right)\left(1-3y\right)+5=-5-6y\left(y+1\right)
Use the distributive property to multiply 2 by y+4.
-22y-6y^{2}+8+5=-5-6y\left(y+1\right)
Use the distributive property to multiply 2y+8 by 1-3y and combine like terms.
-22y-6y^{2}+13=-5-6y\left(y+1\right)
Add 8 and 5 to get 13.
-22y-6y^{2}+13+6y\left(y+1\right)=-5
Add 6y\left(y+1\right) to both sides.
-22y-6y^{2}+13+6y^{2}+6y=-5
Use the distributive property to multiply 6y by y+1.
-22y+13+6y=-5
Combine -6y^{2} and 6y^{2} to get 0.
-16y+13=-5
Combine -22y and 6y to get -16y.
-16y=-5-13
Subtract 13 from both sides.
-16y=-18
Subtract 13 from -5 to get -18.
y=\frac{-18}{-16}
Divide both sides by -16.
y=\frac{9}{8}
Reduce the fraction \frac{-18}{-16} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}