Solve for x
x=y+1
Solve for y
y=x-1
Graph
Share
Copied to clipboard
2x-2y-1=1
Use the distributive property to multiply 2 by x-y.
2x-1=1+2y
Add 2y to both sides.
2x=1+2y+1
Add 1 to both sides.
2x=2+2y
Add 1 and 1 to get 2.
2x=2y+2
The equation is in standard form.
\frac{2x}{2}=\frac{2y+2}{2}
Divide both sides by 2.
x=\frac{2y+2}{2}
Dividing by 2 undoes the multiplication by 2.
x=y+1
Divide 2+2y by 2.
2x-2y-1=1
Use the distributive property to multiply 2 by x-y.
-2y-1=1-2x
Subtract 2x from both sides.
-2y=1-2x+1
Add 1 to both sides.
-2y=2-2x
Add 1 and 1 to get 2.
\frac{-2y}{-2}=\frac{2-2x}{-2}
Divide both sides by -2.
y=\frac{2-2x}{-2}
Dividing by -2 undoes the multiplication by -2.
y=x-1
Divide 2-2x by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}