Solve for a
a=\frac{2b-x}{3}
Solve for b
b=\frac{x+3a}{2}
Graph
Share
Copied to clipboard
2x-2a+2b=3x+a
Use the distributive property to multiply 2 by x-a.
2x-2a+2b-a=3x
Subtract a from both sides.
2x-3a+2b=3x
Combine -2a and -a to get -3a.
-3a+2b=3x-2x
Subtract 2x from both sides.
-3a+2b=x
Combine 3x and -2x to get x.
-3a=x-2b
Subtract 2b from both sides.
\frac{-3a}{-3}=\frac{x-2b}{-3}
Divide both sides by -3.
a=\frac{x-2b}{-3}
Dividing by -3 undoes the multiplication by -3.
a=\frac{2b-x}{3}
Divide x-2b by -3.
2x-2a+2b=3x+a
Use the distributive property to multiply 2 by x-a.
-2a+2b=3x+a-2x
Subtract 2x from both sides.
-2a+2b=x+a
Combine 3x and -2x to get x.
2b=x+a+2a
Add 2a to both sides.
2b=x+3a
Combine a and 2a to get 3a.
\frac{2b}{2}=\frac{x+3a}{2}
Divide both sides by 2.
b=\frac{x+3a}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}