Solve for x
x = -\frac{9}{5} = -1\frac{4}{5} = -1.8
Graph
Share
Copied to clipboard
2x-10-3\left(x+3\right)-x=4+2\left(x-1\right)-3\left(1-2x\right)
Use the distributive property to multiply 2 by x-5.
2x-10-3x-9-x=4+2\left(x-1\right)-3\left(1-2x\right)
Use the distributive property to multiply -3 by x+3.
-x-10-9-x=4+2\left(x-1\right)-3\left(1-2x\right)
Combine 2x and -3x to get -x.
-x-19-x=4+2\left(x-1\right)-3\left(1-2x\right)
Subtract 9 from -10 to get -19.
-2x-19=4+2\left(x-1\right)-3\left(1-2x\right)
Combine -x and -x to get -2x.
-2x-19=4+2x-2-3\left(1-2x\right)
Use the distributive property to multiply 2 by x-1.
-2x-19=2+2x-3\left(1-2x\right)
Subtract 2 from 4 to get 2.
-2x-19=2+2x-3+6x
Use the distributive property to multiply -3 by 1-2x.
-2x-19=-1+2x+6x
Subtract 3 from 2 to get -1.
-2x-19=-1+8x
Combine 2x and 6x to get 8x.
-2x-19-8x=-1
Subtract 8x from both sides.
-10x-19=-1
Combine -2x and -8x to get -10x.
-10x=-1+19
Add 19 to both sides.
-10x=18
Add -1 and 19 to get 18.
x=\frac{18}{-10}
Divide both sides by -10.
x=-\frac{9}{5}
Reduce the fraction \frac{18}{-10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}