Solve for x
x=\frac{1}{4}=0.25
Graph
Share
Copied to clipboard
\left(2x-6\right)\left(x-2\right)-\left(x+3\right)^{2}=\left(x+1\right)\left(x-1\right)
Use the distributive property to multiply 2 by x-3.
2x^{2}-10x+12-\left(x+3\right)^{2}=\left(x+1\right)\left(x-1\right)
Use the distributive property to multiply 2x-6 by x-2 and combine like terms.
2x^{2}-10x+12-\left(x^{2}+6x+9\right)=\left(x+1\right)\left(x-1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}-10x+12-x^{2}-6x-9=\left(x+1\right)\left(x-1\right)
To find the opposite of x^{2}+6x+9, find the opposite of each term.
x^{2}-10x+12-6x-9=\left(x+1\right)\left(x-1\right)
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-16x+12-9=\left(x+1\right)\left(x-1\right)
Combine -10x and -6x to get -16x.
x^{2}-16x+3=\left(x+1\right)\left(x-1\right)
Subtract 9 from 12 to get 3.
x^{2}-16x+3=x^{2}-1
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}-16x+3-x^{2}=-1
Subtract x^{2} from both sides.
-16x+3=-1
Combine x^{2} and -x^{2} to get 0.
-16x=-1-3
Subtract 3 from both sides.
-16x=-4
Subtract 3 from -1 to get -4.
x=\frac{-4}{-16}
Divide both sides by -16.
x=\frac{1}{4}
Reduce the fraction \frac{-4}{-16} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}