Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}-6x+9\right)=3\left(x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-12x+18=3\left(x-4\right)^{2}
Use the distributive property to multiply 2 by x^{2}-6x+9.
2x^{2}-12x+18=3\left(x^{2}-8x+16\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
2x^{2}-12x+18=3x^{2}-24x+48
Use the distributive property to multiply 3 by x^{2}-8x+16.
2x^{2}-12x+18-3x^{2}=-24x+48
Subtract 3x^{2} from both sides.
-x^{2}-12x+18=-24x+48
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}-12x+18+24x=48
Add 24x to both sides.
-x^{2}+12x+18=48
Combine -12x and 24x to get 12x.
-x^{2}+12x+18-48=0
Subtract 48 from both sides.
-x^{2}+12x-30=0
Subtract 48 from 18 to get -30.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\left(-30\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 12 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-1\right)\left(-30\right)}}{2\left(-1\right)}
Square 12.
x=\frac{-12±\sqrt{144+4\left(-30\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-12±\sqrt{144-120}}{2\left(-1\right)}
Multiply 4 times -30.
x=\frac{-12±\sqrt{24}}{2\left(-1\right)}
Add 144 to -120.
x=\frac{-12±2\sqrt{6}}{2\left(-1\right)}
Take the square root of 24.
x=\frac{-12±2\sqrt{6}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{6}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{6}}{-2} when ± is plus. Add -12 to 2\sqrt{6}.
x=6-\sqrt{6}
Divide -12+2\sqrt{6} by -2.
x=\frac{-2\sqrt{6}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{6}}{-2} when ± is minus. Subtract 2\sqrt{6} from -12.
x=\sqrt{6}+6
Divide -12-2\sqrt{6} by -2.
x=6-\sqrt{6} x=\sqrt{6}+6
The equation is now solved.
2\left(x^{2}-6x+9\right)=3\left(x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-12x+18=3\left(x-4\right)^{2}
Use the distributive property to multiply 2 by x^{2}-6x+9.
2x^{2}-12x+18=3\left(x^{2}-8x+16\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
2x^{2}-12x+18=3x^{2}-24x+48
Use the distributive property to multiply 3 by x^{2}-8x+16.
2x^{2}-12x+18-3x^{2}=-24x+48
Subtract 3x^{2} from both sides.
-x^{2}-12x+18=-24x+48
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}-12x+18+24x=48
Add 24x to both sides.
-x^{2}+12x+18=48
Combine -12x and 24x to get 12x.
-x^{2}+12x=48-18
Subtract 18 from both sides.
-x^{2}+12x=30
Subtract 18 from 48 to get 30.
\frac{-x^{2}+12x}{-1}=\frac{30}{-1}
Divide both sides by -1.
x^{2}+\frac{12}{-1}x=\frac{30}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-12x=\frac{30}{-1}
Divide 12 by -1.
x^{2}-12x=-30
Divide 30 by -1.
x^{2}-12x+\left(-6\right)^{2}=-30+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-30+36
Square -6.
x^{2}-12x+36=6
Add -30 to 36.
\left(x-6\right)^{2}=6
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{6}
Take the square root of both sides of the equation.
x-6=\sqrt{6} x-6=-\sqrt{6}
Simplify.
x=\sqrt{6}+6 x=6-\sqrt{6}
Add 6 to both sides of the equation.