Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}-6x+9\right)=\left(-x\right)\left(3-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-12x+18=\left(-x\right)\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}-6x+9.
2x^{2}-12x+18=3\left(-x\right)-\left(-x\right)x
Use the distributive property to multiply -x by 3-x.
2x^{2}-12x+18=3\left(-x\right)+xx
Multiply -1 and -1 to get 1.
2x^{2}-12x+18=3\left(-x\right)+x^{2}
Multiply x and x to get x^{2}.
2x^{2}-12x+18-3\left(-x\right)=x^{2}
Subtract 3\left(-x\right) from both sides.
2x^{2}-12x+18-3\left(-x\right)-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}-12x+18-3\left(-1\right)x-x^{2}=0
Multiply -1 and 3 to get -3.
2x^{2}-12x+18+3x-x^{2}=0
Multiply -3 and -1 to get 3.
2x^{2}-9x+18-x^{2}=0
Combine -12x and 3x to get -9x.
x^{2}-9x+18=0
Combine 2x^{2} and -x^{2} to get x^{2}.
a+b=-9 ab=18
To solve the equation, factor x^{2}-9x+18 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-6 b=-3
The solution is the pair that gives sum -9.
\left(x-6\right)\left(x-3\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=6 x=3
To find equation solutions, solve x-6=0 and x-3=0.
2\left(x^{2}-6x+9\right)=\left(-x\right)\left(3-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-12x+18=\left(-x\right)\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}-6x+9.
2x^{2}-12x+18=3\left(-x\right)-\left(-x\right)x
Use the distributive property to multiply -x by 3-x.
2x^{2}-12x+18=3\left(-x\right)+xx
Multiply -1 and -1 to get 1.
2x^{2}-12x+18=3\left(-x\right)+x^{2}
Multiply x and x to get x^{2}.
2x^{2}-12x+18-3\left(-x\right)=x^{2}
Subtract 3\left(-x\right) from both sides.
2x^{2}-12x+18-3\left(-x\right)-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}-12x+18-3\left(-1\right)x-x^{2}=0
Multiply -1 and 3 to get -3.
2x^{2}-12x+18+3x-x^{2}=0
Multiply -3 and -1 to get 3.
2x^{2}-9x+18-x^{2}=0
Combine -12x and 3x to get -9x.
x^{2}-9x+18=0
Combine 2x^{2} and -x^{2} to get x^{2}.
a+b=-9 ab=1\times 18=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+18. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-6 b=-3
The solution is the pair that gives sum -9.
\left(x^{2}-6x\right)+\left(-3x+18\right)
Rewrite x^{2}-9x+18 as \left(x^{2}-6x\right)+\left(-3x+18\right).
x\left(x-6\right)-3\left(x-6\right)
Factor out x in the first and -3 in the second group.
\left(x-6\right)\left(x-3\right)
Factor out common term x-6 by using distributive property.
x=6 x=3
To find equation solutions, solve x-6=0 and x-3=0.
2\left(x^{2}-6x+9\right)=\left(-x\right)\left(3-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-12x+18=\left(-x\right)\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}-6x+9.
2x^{2}-12x+18=3\left(-x\right)-\left(-x\right)x
Use the distributive property to multiply -x by 3-x.
2x^{2}-12x+18=3\left(-x\right)+xx
Multiply -1 and -1 to get 1.
2x^{2}-12x+18=3\left(-x\right)+x^{2}
Multiply x and x to get x^{2}.
2x^{2}-12x+18-3\left(-x\right)=x^{2}
Subtract 3\left(-x\right) from both sides.
2x^{2}-12x+18-3\left(-x\right)-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}-12x+18-3\left(-1\right)x-x^{2}=0
Multiply -1 and 3 to get -3.
2x^{2}-12x+18+3x-x^{2}=0
Multiply -3 and -1 to get 3.
2x^{2}-9x+18-x^{2}=0
Combine -12x and 3x to get -9x.
x^{2}-9x+18=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 18}}{2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-72}}{2}
Multiply -4 times 18.
x=\frac{-\left(-9\right)±\sqrt{9}}{2}
Add 81 to -72.
x=\frac{-\left(-9\right)±3}{2}
Take the square root of 9.
x=\frac{9±3}{2}
The opposite of -9 is 9.
x=\frac{12}{2}
Now solve the equation x=\frac{9±3}{2} when ± is plus. Add 9 to 3.
x=6
Divide 12 by 2.
x=\frac{6}{2}
Now solve the equation x=\frac{9±3}{2} when ± is minus. Subtract 3 from 9.
x=3
Divide 6 by 2.
x=6 x=3
The equation is now solved.
2\left(x^{2}-6x+9\right)=\left(-x\right)\left(3-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
2x^{2}-12x+18=\left(-x\right)\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}-6x+9.
2x^{2}-12x+18=3\left(-x\right)-\left(-x\right)x
Use the distributive property to multiply -x by 3-x.
2x^{2}-12x+18=3\left(-x\right)+xx
Multiply -1 and -1 to get 1.
2x^{2}-12x+18=3\left(-x\right)+x^{2}
Multiply x and x to get x^{2}.
2x^{2}-12x+18-3\left(-x\right)=x^{2}
Subtract 3\left(-x\right) from both sides.
2x^{2}-12x+18-3\left(-x\right)-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}-12x+18-3\left(-1\right)x-x^{2}=0
Multiply -1 and 3 to get -3.
2x^{2}-12x+18+3x-x^{2}=0
Multiply -3 and -1 to get 3.
2x^{2}-9x+18-x^{2}=0
Combine -12x and 3x to get -9x.
x^{2}-9x+18=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-9x=-18
Subtract 18 from both sides. Anything subtracted from zero gives its negation.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-18+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-18+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{9}{4}
Add -18 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{3}{2} x-\frac{9}{2}=-\frac{3}{2}
Simplify.
x=6 x=3
Add \frac{9}{2} to both sides of the equation.