Solve for x
x = \frac{57}{25} = 2\frac{7}{25} = 2.28
Graph
Share
Copied to clipboard
2x-6+x=\frac{1}{3}\left(1+\frac{2}{3}x\right)
Use the distributive property to multiply 2 by x-3.
3x-6=\frac{1}{3}\left(1+\frac{2}{3}x\right)
Combine 2x and x to get 3x.
3x-6=\frac{1}{3}+\frac{1}{3}\times \frac{2}{3}x
Use the distributive property to multiply \frac{1}{3} by 1+\frac{2}{3}x.
3x-6=\frac{1}{3}+\frac{1\times 2}{3\times 3}x
Multiply \frac{1}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
3x-6=\frac{1}{3}+\frac{2}{9}x
Do the multiplications in the fraction \frac{1\times 2}{3\times 3}.
3x-6-\frac{2}{9}x=\frac{1}{3}
Subtract \frac{2}{9}x from both sides.
\frac{25}{9}x-6=\frac{1}{3}
Combine 3x and -\frac{2}{9}x to get \frac{25}{9}x.
\frac{25}{9}x=\frac{1}{3}+6
Add 6 to both sides.
\frac{25}{9}x=\frac{1}{3}+\frac{18}{3}
Convert 6 to fraction \frac{18}{3}.
\frac{25}{9}x=\frac{1+18}{3}
Since \frac{1}{3} and \frac{18}{3} have the same denominator, add them by adding their numerators.
\frac{25}{9}x=\frac{19}{3}
Add 1 and 18 to get 19.
x=\frac{19}{3}\times \frac{9}{25}
Multiply both sides by \frac{9}{25}, the reciprocal of \frac{25}{9}.
x=\frac{19\times 9}{3\times 25}
Multiply \frac{19}{3} times \frac{9}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{171}{75}
Do the multiplications in the fraction \frac{19\times 9}{3\times 25}.
x=\frac{57}{25}
Reduce the fraction \frac{171}{75} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}