Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(x-1\right)^{3}=6\times 4+3
Multiply both sides of the equation by 4.
8\left(x^{3}-3x^{2}+3x-1\right)=6\times 4+3
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
8x^{3}-24x^{2}+24x-8=6\times 4+3
Use the distributive property to multiply 8 by x^{3}-3x^{2}+3x-1.
8x^{3}-24x^{2}+24x-8=24+3
Multiply 6 and 4 to get 24.
8x^{3}-24x^{2}+24x-8=27
Add 24 and 3 to get 27.
8x^{3}-24x^{2}+24x-8-27=0
Subtract 27 from both sides.
8x^{3}-24x^{2}+24x-35=0
Subtract 27 from -8 to get -35.
±\frac{35}{8},±\frac{35}{4},±\frac{35}{2},±35,±\frac{7}{8},±\frac{7}{4},±\frac{7}{2},±7,±\frac{5}{8},±\frac{5}{4},±\frac{5}{2},±5,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -35 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=\frac{5}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{2}-2x+7=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}-24x^{2}+24x-35 by 2\left(x-\frac{5}{2}\right)=2x-5 to get 4x^{2}-2x+7. Solve the equation where the result equals to 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\times 7}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -2 for b, and 7 for c in the quadratic formula.
x=\frac{2±\sqrt{-108}}{8}
Do the calculations.
x=\frac{-3i\sqrt{3}+1}{4} x=\frac{1+3i\sqrt{3}}{4}
Solve the equation 4x^{2}-2x+7=0 when ± is plus and when ± is minus.
x=\frac{5}{2} x=\frac{-3i\sqrt{3}+1}{4} x=\frac{1+3i\sqrt{3}}{4}
List all found solutions.
8\left(x-1\right)^{3}=6\times 4+3
Multiply both sides of the equation by 4.
8\left(x^{3}-3x^{2}+3x-1\right)=6\times 4+3
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1\right)^{3}.
8x^{3}-24x^{2}+24x-8=6\times 4+3
Use the distributive property to multiply 8 by x^{3}-3x^{2}+3x-1.
8x^{3}-24x^{2}+24x-8=24+3
Multiply 6 and 4 to get 24.
8x^{3}-24x^{2}+24x-8=27
Add 24 and 3 to get 27.
8x^{3}-24x^{2}+24x-8-27=0
Subtract 27 from both sides.
8x^{3}-24x^{2}+24x-35=0
Subtract 27 from -8 to get -35.
±\frac{35}{8},±\frac{35}{4},±\frac{35}{2},±35,±\frac{7}{8},±\frac{7}{4},±\frac{7}{2},±7,±\frac{5}{8},±\frac{5}{4},±\frac{5}{2},±5,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -35 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=\frac{5}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{2}-2x+7=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}-24x^{2}+24x-35 by 2\left(x-\frac{5}{2}\right)=2x-5 to get 4x^{2}-2x+7. Solve the equation where the result equals to 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\times 7}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -2 for b, and 7 for c in the quadratic formula.
x=\frac{2±\sqrt{-108}}{8}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=\frac{5}{2}
List all found solutions.