Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}-2x+1\right)+2=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-4x+2+2=0
Use the distributive property to multiply 2 by x^{2}-2x+1.
2x^{2}-4x+4=0
Add 2 and 2 to get 4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\times 4}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\times 4}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\times 4}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16-32}}{2\times 2}
Multiply -8 times 4.
x=\frac{-\left(-4\right)±\sqrt{-16}}{2\times 2}
Add 16 to -32.
x=\frac{-\left(-4\right)±4i}{2\times 2}
Take the square root of -16.
x=\frac{4±4i}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±4i}{4}
Multiply 2 times 2.
x=\frac{4+4i}{4}
Now solve the equation x=\frac{4±4i}{4} when ± is plus. Add 4 to 4i.
x=1+i
Divide 4+4i by 4.
x=\frac{4-4i}{4}
Now solve the equation x=\frac{4±4i}{4} when ± is minus. Subtract 4i from 4.
x=1-i
Divide 4-4i by 4.
x=1+i x=1-i
The equation is now solved.
2\left(x^{2}-2x+1\right)+2=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-4x+2+2=0
Use the distributive property to multiply 2 by x^{2}-2x+1.
2x^{2}-4x+4=0
Add 2 and 2 to get 4.
2x^{2}-4x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-4x}{2}=-\frac{4}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=-\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=-\frac{4}{2}
Divide -4 by 2.
x^{2}-2x=-2
Divide -4 by 2.
x^{2}-2x+1=-2+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-1
Add -2 to 1.
\left(x-1\right)^{2}=-1
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-1=i x-1=-i
Simplify.
x=1+i x=1-i
Add 1 to both sides of the equation.