Solve for x
x>-\frac{19}{9}
Graph
Share
Copied to clipboard
12\left(x-\frac{2}{3}\right)-18\left(\frac{1}{2}-2\right)>3x
Multiply both sides of the equation by 6, the least common multiple of 3,2. Since 6 is positive, the inequality direction remains the same.
12x+12\left(-\frac{2}{3}\right)-18\left(\frac{1}{2}-2\right)>3x
Use the distributive property to multiply 12 by x-\frac{2}{3}.
12x+\frac{12\left(-2\right)}{3}-18\left(\frac{1}{2}-2\right)>3x
Express 12\left(-\frac{2}{3}\right) as a single fraction.
12x+\frac{-24}{3}-18\left(\frac{1}{2}-2\right)>3x
Multiply 12 and -2 to get -24.
12x-8-18\left(\frac{1}{2}-2\right)>3x
Divide -24 by 3 to get -8.
12x-8-18\left(\frac{1}{2}-\frac{4}{2}\right)>3x
Convert 2 to fraction \frac{4}{2}.
12x-8-18\times \frac{1-4}{2}>3x
Since \frac{1}{2} and \frac{4}{2} have the same denominator, subtract them by subtracting their numerators.
12x-8-18\left(-\frac{3}{2}\right)>3x
Subtract 4 from 1 to get -3.
12x-8-\frac{18\left(-3\right)}{2}>3x
Express 18\left(-\frac{3}{2}\right) as a single fraction.
12x-8-\frac{-54}{2}>3x
Multiply 18 and -3 to get -54.
12x-8-\left(-27\right)>3x
Divide -54 by 2 to get -27.
12x-8+27>3x
The opposite of -27 is 27.
12x+19>3x
Add -8 and 27 to get 19.
12x+19-3x>0
Subtract 3x from both sides.
9x+19>0
Combine 12x and -3x to get 9x.
9x>-19
Subtract 19 from both sides. Anything subtracted from zero gives its negation.
x>-\frac{19}{9}
Divide both sides by 9. Since 9 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}