Solve for x (complex solution)
x=-\frac{\sqrt{10}i}{3}\approx -0-1.054092553i
x=\frac{\sqrt{10}i}{3}\approx 1.054092553i
Graph
Quiz
Polynomial
5 problems similar to:
2 ( x - \frac { 1 } { 3 } ) ^ { 2 } + 6 = 4 - \frac { 4 } { 3 } x
Share
Copied to clipboard
2\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)+6=4-\frac{4}{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
2x^{2}-\frac{4}{3}x+\frac{2}{9}+6=4-\frac{4}{3}x
Use the distributive property to multiply 2 by x^{2}-\frac{2}{3}x+\frac{1}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}=4-\frac{4}{3}x
Add \frac{2}{9} and 6 to get \frac{56}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}+\frac{4}{3}x=4
Add \frac{4}{3}x to both sides.
2x^{2}+\frac{56}{9}=4
Combine -\frac{4}{3}x and \frac{4}{3}x to get 0.
2x^{2}=4-\frac{56}{9}
Subtract \frac{56}{9} from both sides.
2x^{2}=-\frac{20}{9}
Subtract \frac{56}{9} from 4 to get -\frac{20}{9}.
x^{2}=\frac{-\frac{20}{9}}{2}
Divide both sides by 2.
x^{2}=\frac{-20}{9\times 2}
Express \frac{-\frac{20}{9}}{2} as a single fraction.
x^{2}=\frac{-20}{18}
Multiply 9 and 2 to get 18.
x^{2}=-\frac{10}{9}
Reduce the fraction \frac{-20}{18} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{10}i}{3} x=-\frac{\sqrt{10}i}{3}
The equation is now solved.
2\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)+6=4-\frac{4}{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
2x^{2}-\frac{4}{3}x+\frac{2}{9}+6=4-\frac{4}{3}x
Use the distributive property to multiply 2 by x^{2}-\frac{2}{3}x+\frac{1}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}=4-\frac{4}{3}x
Add \frac{2}{9} and 6 to get \frac{56}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}-4=-\frac{4}{3}x
Subtract 4 from both sides.
2x^{2}-\frac{4}{3}x+\frac{20}{9}=-\frac{4}{3}x
Subtract 4 from \frac{56}{9} to get \frac{20}{9}.
2x^{2}-\frac{4}{3}x+\frac{20}{9}+\frac{4}{3}x=0
Add \frac{4}{3}x to both sides.
2x^{2}+\frac{20}{9}=0
Combine -\frac{4}{3}x and \frac{4}{3}x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times \frac{20}{9}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and \frac{20}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times \frac{20}{9}}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\times \frac{20}{9}}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{-\frac{160}{9}}}{2\times 2}
Multiply -8 times \frac{20}{9}.
x=\frac{0±\frac{4\sqrt{10}i}{3}}{2\times 2}
Take the square root of -\frac{160}{9}.
x=\frac{0±\frac{4\sqrt{10}i}{3}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{10}i}{3}
Now solve the equation x=\frac{0±\frac{4\sqrt{10}i}{3}}{4} when ± is plus.
x=-\frac{\sqrt{10}i}{3}
Now solve the equation x=\frac{0±\frac{4\sqrt{10}i}{3}}{4} when ± is minus.
x=\frac{\sqrt{10}i}{3} x=-\frac{\sqrt{10}i}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}