Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)+6=4-\frac{4}{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
2x^{2}-\frac{4}{3}x+\frac{2}{9}+6=4-\frac{4}{3}x
Use the distributive property to multiply 2 by x^{2}-\frac{2}{3}x+\frac{1}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}=4-\frac{4}{3}x
Add \frac{2}{9} and 6 to get \frac{56}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}+\frac{4}{3}x=4
Add \frac{4}{3}x to both sides.
2x^{2}+\frac{56}{9}=4
Combine -\frac{4}{3}x and \frac{4}{3}x to get 0.
2x^{2}=4-\frac{56}{9}
Subtract \frac{56}{9} from both sides.
2x^{2}=-\frac{20}{9}
Subtract \frac{56}{9} from 4 to get -\frac{20}{9}.
x^{2}=\frac{-\frac{20}{9}}{2}
Divide both sides by 2.
x^{2}=\frac{-20}{9\times 2}
Express \frac{-\frac{20}{9}}{2} as a single fraction.
x^{2}=\frac{-20}{18}
Multiply 9 and 2 to get 18.
x^{2}=-\frac{10}{9}
Reduce the fraction \frac{-20}{18} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{10}i}{3} x=-\frac{\sqrt{10}i}{3}
The equation is now solved.
2\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)+6=4-\frac{4}{3}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
2x^{2}-\frac{4}{3}x+\frac{2}{9}+6=4-\frac{4}{3}x
Use the distributive property to multiply 2 by x^{2}-\frac{2}{3}x+\frac{1}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}=4-\frac{4}{3}x
Add \frac{2}{9} and 6 to get \frac{56}{9}.
2x^{2}-\frac{4}{3}x+\frac{56}{9}-4=-\frac{4}{3}x
Subtract 4 from both sides.
2x^{2}-\frac{4}{3}x+\frac{20}{9}=-\frac{4}{3}x
Subtract 4 from \frac{56}{9} to get \frac{20}{9}.
2x^{2}-\frac{4}{3}x+\frac{20}{9}+\frac{4}{3}x=0
Add \frac{4}{3}x to both sides.
2x^{2}+\frac{20}{9}=0
Combine -\frac{4}{3}x and \frac{4}{3}x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times \frac{20}{9}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and \frac{20}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times \frac{20}{9}}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\times \frac{20}{9}}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{-\frac{160}{9}}}{2\times 2}
Multiply -8 times \frac{20}{9}.
x=\frac{0±\frac{4\sqrt{10}i}{3}}{2\times 2}
Take the square root of -\frac{160}{9}.
x=\frac{0±\frac{4\sqrt{10}i}{3}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{10}i}{3}
Now solve the equation x=\frac{0±\frac{4\sqrt{10}i}{3}}{4} when ± is plus.
x=-\frac{\sqrt{10}i}{3}
Now solve the equation x=\frac{0±\frac{4\sqrt{10}i}{3}}{4} when ± is minus.
x=\frac{\sqrt{10}i}{3} x=-\frac{\sqrt{10}i}{3}
The equation is now solved.