Solve for x (complex solution)
x=\frac{5+\sqrt{39}i}{4}\approx 1.25+1.5612495i
x=\frac{-\sqrt{39}i+5}{4}\approx 1.25-1.5612495i
Graph
Share
Copied to clipboard
2x^{2}+8=5x
Use the distributive property to multiply 2 by x^{2}+4.
2x^{2}+8-5x=0
Subtract 5x from both sides.
2x^{2}-5x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 8}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -5 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\times 8}}{2\times 2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\times 8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-5\right)±\sqrt{25-64}}{2\times 2}
Multiply -8 times 8.
x=\frac{-\left(-5\right)±\sqrt{-39}}{2\times 2}
Add 25 to -64.
x=\frac{-\left(-5\right)±\sqrt{39}i}{2\times 2}
Take the square root of -39.
x=\frac{5±\sqrt{39}i}{2\times 2}
The opposite of -5 is 5.
x=\frac{5±\sqrt{39}i}{4}
Multiply 2 times 2.
x=\frac{5+\sqrt{39}i}{4}
Now solve the equation x=\frac{5±\sqrt{39}i}{4} when ± is plus. Add 5 to i\sqrt{39}.
x=\frac{-\sqrt{39}i+5}{4}
Now solve the equation x=\frac{5±\sqrt{39}i}{4} when ± is minus. Subtract i\sqrt{39} from 5.
x=\frac{5+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+5}{4}
The equation is now solved.
2x^{2}+8=5x
Use the distributive property to multiply 2 by x^{2}+4.
2x^{2}+8-5x=0
Subtract 5x from both sides.
2x^{2}-5x=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-5x}{2}=-\frac{8}{2}
Divide both sides by 2.
x^{2}-\frac{5}{2}x=-\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{5}{2}x=-4
Divide -8 by 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-4+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-4+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{39}{16}
Add -4 to \frac{25}{16}.
\left(x-\frac{5}{4}\right)^{2}=-\frac{39}{16}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{39}{16}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{\sqrt{39}i}{4} x-\frac{5}{4}=-\frac{\sqrt{39}i}{4}
Simplify.
x=\frac{5+\sqrt{39}i}{4} x=\frac{-\sqrt{39}i+5}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}