Solve for a
a=3-2x
Solve for x
x=\frac{3-a}{2}
Graph
Share
Copied to clipboard
2x+2a-\left(a-1\right)=4
Use the distributive property to multiply 2 by x+a.
2x+2a-a+1=4
To find the opposite of a-1, find the opposite of each term.
2x+a+1=4
Combine 2a and -a to get a.
a+1=4-2x
Subtract 2x from both sides.
a=4-2x-1
Subtract 1 from both sides.
a=3-2x
Subtract 1 from 4 to get 3.
2x+2a-\left(a-1\right)=4
Use the distributive property to multiply 2 by x+a.
2x+2a-a+1=4
To find the opposite of a-1, find the opposite of each term.
2x+a+1=4
Combine 2a and -a to get a.
2x+1=4-a
Subtract a from both sides.
2x=4-a-1
Subtract 1 from both sides.
2x=3-a
Subtract 1 from 4 to get 3.
\frac{2x}{2}=\frac{3-a}{2}
Divide both sides by 2.
x=\frac{3-a}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}