Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(x+5\right)\times 5x=10
Multiply 2 and 3 to get 6.
30\left(x+5\right)x=10
Multiply 6 and 5 to get 30.
\left(30x+150\right)x=10
Use the distributive property to multiply 30 by x+5.
30x^{2}+150x=10
Use the distributive property to multiply 30x+150 by x.
30x^{2}+150x-10=0
Subtract 10 from both sides.
x=\frac{-150±\sqrt{150^{2}-4\times 30\left(-10\right)}}{2\times 30}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 30 for a, 150 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±\sqrt{22500-4\times 30\left(-10\right)}}{2\times 30}
Square 150.
x=\frac{-150±\sqrt{22500-120\left(-10\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-150±\sqrt{22500+1200}}{2\times 30}
Multiply -120 times -10.
x=\frac{-150±\sqrt{23700}}{2\times 30}
Add 22500 to 1200.
x=\frac{-150±10\sqrt{237}}{2\times 30}
Take the square root of 23700.
x=\frac{-150±10\sqrt{237}}{60}
Multiply 2 times 30.
x=\frac{10\sqrt{237}-150}{60}
Now solve the equation x=\frac{-150±10\sqrt{237}}{60} when ± is plus. Add -150 to 10\sqrt{237}.
x=\frac{\sqrt{237}}{6}-\frac{5}{2}
Divide -150+10\sqrt{237} by 60.
x=\frac{-10\sqrt{237}-150}{60}
Now solve the equation x=\frac{-150±10\sqrt{237}}{60} when ± is minus. Subtract 10\sqrt{237} from -150.
x=-\frac{\sqrt{237}}{6}-\frac{5}{2}
Divide -150-10\sqrt{237} by 60.
x=\frac{\sqrt{237}}{6}-\frac{5}{2} x=-\frac{\sqrt{237}}{6}-\frac{5}{2}
The equation is now solved.
6\left(x+5\right)\times 5x=10
Multiply 2 and 3 to get 6.
30\left(x+5\right)x=10
Multiply 6 and 5 to get 30.
\left(30x+150\right)x=10
Use the distributive property to multiply 30 by x+5.
30x^{2}+150x=10
Use the distributive property to multiply 30x+150 by x.
\frac{30x^{2}+150x}{30}=\frac{10}{30}
Divide both sides by 30.
x^{2}+\frac{150}{30}x=\frac{10}{30}
Dividing by 30 undoes the multiplication by 30.
x^{2}+5x=\frac{10}{30}
Divide 150 by 30.
x^{2}+5x=\frac{1}{3}
Reduce the fraction \frac{10}{30} to lowest terms by extracting and canceling out 10.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=\frac{1}{3}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=\frac{1}{3}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{79}{12}
Add \frac{1}{3} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=\frac{79}{12}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{79}{12}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{237}}{6} x+\frac{5}{2}=-\frac{\sqrt{237}}{6}
Simplify.
x=\frac{\sqrt{237}}{6}-\frac{5}{2} x=-\frac{\sqrt{237}}{6}-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.