Solve for x
x\leq 16
Graph
Share
Copied to clipboard
2x+8\geq 2.5x
Use the distributive property to multiply 2 by x+4.
2x+8-2.5x\geq 0
Subtract 2.5x from both sides.
-0.5x+8\geq 0
Combine 2x and -2.5x to get -0.5x.
-0.5x\geq -8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
x\leq \frac{-8}{-0.5}
Divide both sides by -0.5. Since -0.5 is negative, the inequality direction is changed.
x\leq \frac{-80}{-5}
Expand \frac{-8}{-0.5} by multiplying both numerator and the denominator by 10.
x\leq 16
Divide -80 by -5 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}