Solve for x
x=\sqrt{89}-2\approx 7.433981132
x=-\left(\sqrt{89}+2\right)\approx -11.433981132
Graph
Share
Copied to clipboard
-4\left(x+3\right)+2\left(x+3\right)^{2}=176
Multiply 2 and -2 to get -4.
-4x-12+2\left(x+3\right)^{2}=176
Use the distributive property to multiply -4 by x+3.
-4x-12+2\left(x^{2}+6x+9\right)=176
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-4x-12+2x^{2}+12x+18=176
Use the distributive property to multiply 2 by x^{2}+6x+9.
8x-12+2x^{2}+18=176
Combine -4x and 12x to get 8x.
8x+6+2x^{2}=176
Add -12 and 18 to get 6.
8x+6+2x^{2}-176=0
Subtract 176 from both sides.
8x-170+2x^{2}=0
Subtract 176 from 6 to get -170.
2x^{2}+8x-170=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-170\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and -170 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\left(-170\right)}}{2\times 2}
Square 8.
x=\frac{-8±\sqrt{64-8\left(-170\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-8±\sqrt{64+1360}}{2\times 2}
Multiply -8 times -170.
x=\frac{-8±\sqrt{1424}}{2\times 2}
Add 64 to 1360.
x=\frac{-8±4\sqrt{89}}{2\times 2}
Take the square root of 1424.
x=\frac{-8±4\sqrt{89}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{89}-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{89}}{4} when ± is plus. Add -8 to 4\sqrt{89}.
x=\sqrt{89}-2
Divide -8+4\sqrt{89} by 4.
x=\frac{-4\sqrt{89}-8}{4}
Now solve the equation x=\frac{-8±4\sqrt{89}}{4} when ± is minus. Subtract 4\sqrt{89} from -8.
x=-\sqrt{89}-2
Divide -8-4\sqrt{89} by 4.
x=\sqrt{89}-2 x=-\sqrt{89}-2
The equation is now solved.
-4\left(x+3\right)+2\left(x+3\right)^{2}=176
Multiply 2 and -2 to get -4.
-4x-12+2\left(x+3\right)^{2}=176
Use the distributive property to multiply -4 by x+3.
-4x-12+2\left(x^{2}+6x+9\right)=176
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
-4x-12+2x^{2}+12x+18=176
Use the distributive property to multiply 2 by x^{2}+6x+9.
8x-12+2x^{2}+18=176
Combine -4x and 12x to get 8x.
8x+6+2x^{2}=176
Add -12 and 18 to get 6.
8x+2x^{2}=176-6
Subtract 6 from both sides.
8x+2x^{2}=170
Subtract 6 from 176 to get 170.
2x^{2}+8x=170
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+8x}{2}=\frac{170}{2}
Divide both sides by 2.
x^{2}+\frac{8}{2}x=\frac{170}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+4x=\frac{170}{2}
Divide 8 by 2.
x^{2}+4x=85
Divide 170 by 2.
x^{2}+4x+2^{2}=85+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=85+4
Square 2.
x^{2}+4x+4=89
Add 85 to 4.
\left(x+2\right)^{2}=89
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{89}
Take the square root of both sides of the equation.
x+2=\sqrt{89} x+2=-\sqrt{89}
Simplify.
x=\sqrt{89}-2 x=-\sqrt{89}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}