Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}+12x^{2}+24x+8=0
Expand the expression.
±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 8 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+10x+4=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+12x^{2}+24x+8 by x+2 to get x^{2}+10x+4. Solve the equation where the result equals to 0.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and 4 for c in the quadratic formula.
x=\frac{-10±2\sqrt{21}}{2}
Do the calculations.
x=-\sqrt{21}-5 x=\sqrt{21}-5
Solve the equation x^{2}+10x+4=0 when ± is plus and when ± is minus.
x=-2 x=-\sqrt{21}-5 x=\sqrt{21}-5
List all found solutions.