Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}+4x+4\right)=5\left(3-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+8x+8=5\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}+4x+4.
2x^{2}+8x+8=15-5x
Use the distributive property to multiply 5 by 3-x.
2x^{2}+8x+8-15=-5x
Subtract 15 from both sides.
2x^{2}+8x-7=-5x
Subtract 15 from 8 to get -7.
2x^{2}+8x-7+5x=0
Add 5x to both sides.
2x^{2}+13x-7=0
Combine 8x and 5x to get 13x.
a+b=13 ab=2\left(-7\right)=-14
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
-1,14 -2,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -14.
-1+14=13 -2+7=5
Calculate the sum for each pair.
a=-1 b=14
The solution is the pair that gives sum 13.
\left(2x^{2}-x\right)+\left(14x-7\right)
Rewrite 2x^{2}+13x-7 as \left(2x^{2}-x\right)+\left(14x-7\right).
x\left(2x-1\right)+7\left(2x-1\right)
Factor out x in the first and 7 in the second group.
\left(2x-1\right)\left(x+7\right)
Factor out common term 2x-1 by using distributive property.
x=\frac{1}{2} x=-7
To find equation solutions, solve 2x-1=0 and x+7=0.
2\left(x^{2}+4x+4\right)=5\left(3-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+8x+8=5\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}+4x+4.
2x^{2}+8x+8=15-5x
Use the distributive property to multiply 5 by 3-x.
2x^{2}+8x+8-15=-5x
Subtract 15 from both sides.
2x^{2}+8x-7=-5x
Subtract 15 from 8 to get -7.
2x^{2}+8x-7+5x=0
Add 5x to both sides.
2x^{2}+13x-7=0
Combine 8x and 5x to get 13x.
x=\frac{-13±\sqrt{13^{2}-4\times 2\left(-7\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 13 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 2\left(-7\right)}}{2\times 2}
Square 13.
x=\frac{-13±\sqrt{169-8\left(-7\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-13±\sqrt{169+56}}{2\times 2}
Multiply -8 times -7.
x=\frac{-13±\sqrt{225}}{2\times 2}
Add 169 to 56.
x=\frac{-13±15}{2\times 2}
Take the square root of 225.
x=\frac{-13±15}{4}
Multiply 2 times 2.
x=\frac{2}{4}
Now solve the equation x=\frac{-13±15}{4} when ± is plus. Add -13 to 15.
x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{28}{4}
Now solve the equation x=\frac{-13±15}{4} when ± is minus. Subtract 15 from -13.
x=-7
Divide -28 by 4.
x=\frac{1}{2} x=-7
The equation is now solved.
2\left(x^{2}+4x+4\right)=5\left(3-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+8x+8=5\left(3-x\right)
Use the distributive property to multiply 2 by x^{2}+4x+4.
2x^{2}+8x+8=15-5x
Use the distributive property to multiply 5 by 3-x.
2x^{2}+8x+8+5x=15
Add 5x to both sides.
2x^{2}+13x+8=15
Combine 8x and 5x to get 13x.
2x^{2}+13x=15-8
Subtract 8 from both sides.
2x^{2}+13x=7
Subtract 8 from 15 to get 7.
\frac{2x^{2}+13x}{2}=\frac{7}{2}
Divide both sides by 2.
x^{2}+\frac{13}{2}x=\frac{7}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=\frac{7}{2}+\left(\frac{13}{4}\right)^{2}
Divide \frac{13}{2}, the coefficient of the x term, by 2 to get \frac{13}{4}. Then add the square of \frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{7}{2}+\frac{169}{16}
Square \frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{225}{16}
Add \frac{7}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{4}\right)^{2}=\frac{225}{16}
Factor x^{2}+\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
x+\frac{13}{4}=\frac{15}{4} x+\frac{13}{4}=-\frac{15}{4}
Simplify.
x=\frac{1}{2} x=-7
Subtract \frac{13}{4} from both sides of the equation.