Solve for x
x=5
x=-7
Graph
Share
Copied to clipboard
2\left(x^{2}+2x+1\right)-1=71
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+4x+2-1=71
Use the distributive property to multiply 2 by x^{2}+2x+1.
2x^{2}+4x+1=71
Subtract 1 from 2 to get 1.
2x^{2}+4x+1-71=0
Subtract 71 from both sides.
2x^{2}+4x-70=0
Subtract 71 from 1 to get -70.
x^{2}+2x-35=0
Divide both sides by 2.
a+b=2 ab=1\left(-35\right)=-35
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-35. To find a and b, set up a system to be solved.
-1,35 -5,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -35.
-1+35=34 -5+7=2
Calculate the sum for each pair.
a=-5 b=7
The solution is the pair that gives sum 2.
\left(x^{2}-5x\right)+\left(7x-35\right)
Rewrite x^{2}+2x-35 as \left(x^{2}-5x\right)+\left(7x-35\right).
x\left(x-5\right)+7\left(x-5\right)
Factor out x in the first and 7 in the second group.
\left(x-5\right)\left(x+7\right)
Factor out common term x-5 by using distributive property.
x=5 x=-7
To find equation solutions, solve x-5=0 and x+7=0.
2\left(x^{2}+2x+1\right)-1=71
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+4x+2-1=71
Use the distributive property to multiply 2 by x^{2}+2x+1.
2x^{2}+4x+1=71
Subtract 1 from 2 to get 1.
2x^{2}+4x+1-71=0
Subtract 71 from both sides.
2x^{2}+4x-70=0
Subtract 71 from 1 to get -70.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-70\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 4 for b, and -70 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 2\left(-70\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-70\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+560}}{2\times 2}
Multiply -8 times -70.
x=\frac{-4±\sqrt{576}}{2\times 2}
Add 16 to 560.
x=\frac{-4±24}{2\times 2}
Take the square root of 576.
x=\frac{-4±24}{4}
Multiply 2 times 2.
x=\frac{20}{4}
Now solve the equation x=\frac{-4±24}{4} when ± is plus. Add -4 to 24.
x=5
Divide 20 by 4.
x=-\frac{28}{4}
Now solve the equation x=\frac{-4±24}{4} when ± is minus. Subtract 24 from -4.
x=-7
Divide -28 by 4.
x=5 x=-7
The equation is now solved.
2\left(x^{2}+2x+1\right)-1=71
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
2x^{2}+4x+2-1=71
Use the distributive property to multiply 2 by x^{2}+2x+1.
2x^{2}+4x+1=71
Subtract 1 from 2 to get 1.
2x^{2}+4x=71-1
Subtract 1 from both sides.
2x^{2}+4x=70
Subtract 1 from 71 to get 70.
\frac{2x^{2}+4x}{2}=\frac{70}{2}
Divide both sides by 2.
x^{2}+\frac{4}{2}x=\frac{70}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+2x=\frac{70}{2}
Divide 4 by 2.
x^{2}+2x=35
Divide 70 by 2.
x^{2}+2x+1^{2}=35+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=35+1
Square 1.
x^{2}+2x+1=36
Add 35 to 1.
\left(x+1\right)^{2}=36
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x+1=6 x+1=-6
Simplify.
x=5 x=-7
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}