Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+2\sqrt{2}-2\sqrt{5}+3=x\left(\sqrt{5}-\sqrt{2}\right)
Use the distributive property to multiply 2 by x+\sqrt{2}-\sqrt{5}.
2x+2\sqrt{2}-2\sqrt{5}+3=x\sqrt{5}-x\sqrt{2}
Use the distributive property to multiply x by \sqrt{5}-\sqrt{2}.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}=-x\sqrt{2}
Subtract x\sqrt{5} from both sides.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=0
Add x\sqrt{2} to both sides.
2x-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}
Subtract 2\sqrt{2} from both sides. Anything subtracted from zero gives its negation.
2x+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}
Add 2\sqrt{5} to both sides.
2x-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}-3
Subtract 3 from both sides.
\left(2-\sqrt{5}+\sqrt{2}\right)x=-2\sqrt{2}+2\sqrt{5}-3
Combine all terms containing x.
\left(\sqrt{2}+2-\sqrt{5}\right)x=2\sqrt{5}-2\sqrt{2}-3
The equation is in standard form.
\frac{\left(\sqrt{2}+2-\sqrt{5}\right)x}{\sqrt{2}+2-\sqrt{5}}=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Divide both sides by 2-\sqrt{5}+\sqrt{2}.
x=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Dividing by 2-\sqrt{5}+\sqrt{2} undoes the multiplication by 2-\sqrt{5}+\sqrt{2}.
x=\frac{4\sqrt{10}+7\sqrt{2}-\sqrt{5}-56}{31}
Divide -2\sqrt{2}+2\sqrt{5}-3 by 2-\sqrt{5}+\sqrt{2}.
2x+2\sqrt{2}-2\sqrt{5}+3=x\left(\sqrt{5}-\sqrt{2}\right)
Use the distributive property to multiply 2 by x+\sqrt{2}-\sqrt{5}.
2x+2\sqrt{2}-2\sqrt{5}+3=x\sqrt{5}-x\sqrt{2}
Use the distributive property to multiply x by \sqrt{5}-\sqrt{2}.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}=-x\sqrt{2}
Subtract x\sqrt{5} from both sides.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=0
Add x\sqrt{2} to both sides.
2x-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}
Subtract 2\sqrt{2} from both sides. Anything subtracted from zero gives its negation.
2x+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}
Add 2\sqrt{5} to both sides.
2x-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}-3
Subtract 3 from both sides.
\left(2-\sqrt{5}+\sqrt{2}\right)x=-2\sqrt{2}+2\sqrt{5}-3
Combine all terms containing x.
\left(\sqrt{2}+2-\sqrt{5}\right)x=2\sqrt{5}-2\sqrt{2}-3
The equation is in standard form.
\frac{\left(\sqrt{2}+2-\sqrt{5}\right)x}{\sqrt{2}+2-\sqrt{5}}=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Divide both sides by 2-\sqrt{5}+\sqrt{2}.
x=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Dividing by 2-\sqrt{5}+\sqrt{2} undoes the multiplication by 2-\sqrt{5}+\sqrt{2}.
x=\frac{4\sqrt{10}+7\sqrt{2}-\sqrt{5}-56}{31}
Divide -2\sqrt{2}+2\sqrt{5}-3 by 2-\sqrt{5}+\sqrt{2}.