Solve for x (complex solution)
x=\frac{4\sqrt{10}+15\sqrt{5}+40\sqrt{2}-16\sqrt{5}-33\sqrt{2}-56}{31}\approx -1.151208465
Solve for x
x=\frac{4\sqrt{10}+7\sqrt{2}-\sqrt{5}-56}{31}\approx -1.151208465
Graph
Share
Copied to clipboard
2x+2\sqrt{2}-2\sqrt{5}+3=x\left(\sqrt{5}-\sqrt{2}\right)
Use the distributive property to multiply 2 by x+\sqrt{2}-\sqrt{5}.
2x+2\sqrt{2}-2\sqrt{5}+3=x\sqrt{5}-x\sqrt{2}
Use the distributive property to multiply x by \sqrt{5}-\sqrt{2}.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}=-x\sqrt{2}
Subtract x\sqrt{5} from both sides.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=0
Add x\sqrt{2} to both sides.
2x-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}
Subtract 2\sqrt{2} from both sides. Anything subtracted from zero gives its negation.
2x+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}
Add 2\sqrt{5} to both sides.
2x-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}-3
Subtract 3 from both sides.
\left(2-\sqrt{5}+\sqrt{2}\right)x=-2\sqrt{2}+2\sqrt{5}-3
Combine all terms containing x.
\left(\sqrt{2}+2-\sqrt{5}\right)x=2\sqrt{5}-2\sqrt{2}-3
The equation is in standard form.
\frac{\left(\sqrt{2}+2-\sqrt{5}\right)x}{\sqrt{2}+2-\sqrt{5}}=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Divide both sides by 2-\sqrt{5}+\sqrt{2}.
x=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Dividing by 2-\sqrt{5}+\sqrt{2} undoes the multiplication by 2-\sqrt{5}+\sqrt{2}.
x=\frac{4\sqrt{10}+7\sqrt{2}-\sqrt{5}-56}{31}
Divide -2\sqrt{2}+2\sqrt{5}-3 by 2-\sqrt{5}+\sqrt{2}.
2x+2\sqrt{2}-2\sqrt{5}+3=x\left(\sqrt{5}-\sqrt{2}\right)
Use the distributive property to multiply 2 by x+\sqrt{2}-\sqrt{5}.
2x+2\sqrt{2}-2\sqrt{5}+3=x\sqrt{5}-x\sqrt{2}
Use the distributive property to multiply x by \sqrt{5}-\sqrt{2}.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}=-x\sqrt{2}
Subtract x\sqrt{5} from both sides.
2x+2\sqrt{2}-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=0
Add x\sqrt{2} to both sides.
2x-2\sqrt{5}+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}
Subtract 2\sqrt{2} from both sides. Anything subtracted from zero gives its negation.
2x+3-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}
Add 2\sqrt{5} to both sides.
2x-x\sqrt{5}+x\sqrt{2}=-2\sqrt{2}+2\sqrt{5}-3
Subtract 3 from both sides.
\left(2-\sqrt{5}+\sqrt{2}\right)x=-2\sqrt{2}+2\sqrt{5}-3
Combine all terms containing x.
\left(\sqrt{2}+2-\sqrt{5}\right)x=2\sqrt{5}-2\sqrt{2}-3
The equation is in standard form.
\frac{\left(\sqrt{2}+2-\sqrt{5}\right)x}{\sqrt{2}+2-\sqrt{5}}=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Divide both sides by 2-\sqrt{5}+\sqrt{2}.
x=\frac{2\sqrt{5}-2\sqrt{2}-3}{\sqrt{2}+2-\sqrt{5}}
Dividing by 2-\sqrt{5}+\sqrt{2} undoes the multiplication by 2-\sqrt{5}+\sqrt{2}.
x=\frac{4\sqrt{10}+7\sqrt{2}-\sqrt{5}-56}{31}
Divide -2\sqrt{2}+2\sqrt{5}-3 by 2-\sqrt{5}+\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}