Skip to main content
Solve for Y (complex solution)
Tick mark Image
Solve for Y
Tick mark Image

Similar Problems from Web Search

Share

2n^{2}Y-8n-8+4\left(nY-4\right)+10Y=16e^{-3n}
Use the distributive property to multiply 2 by n^{2}Y-4n-4.
2n^{2}Y-8n-8+4nY-16+10Y=16e^{-3n}
Use the distributive property to multiply 4 by nY-4.
2n^{2}Y-8n-24+4nY+10Y=16e^{-3n}
Subtract 16 from -8 to get -24.
2n^{2}Y-24+4nY+10Y=16e^{-3n}+8n
Add 8n to both sides.
2n^{2}Y+4nY+10Y=16e^{-3n}+8n+24
Add 24 to both sides.
\left(2n^{2}+4n+10\right)Y=16e^{-3n}+8n+24
Combine all terms containing Y.
\left(2n^{2}+4n+10\right)Y=\frac{16}{e^{3n}}+8n+24
The equation is in standard form.
\frac{\left(2n^{2}+4n+10\right)Y}{2n^{2}+4n+10}=\frac{\frac{16}{e^{3n}}+8n+24}{2n^{2}+4n+10}
Divide both sides by 2n^{2}+4n+10.
Y=\frac{\frac{16}{e^{3n}}+8n+24}{2n^{2}+4n+10}
Dividing by 2n^{2}+4n+10 undoes the multiplication by 2n^{2}+4n+10.
Y=\frac{4\left(ne^{3n}+3e^{3n}+2\right)}{\left(n^{2}+2n+5\right)e^{3n}}
Divide 24+8n+\frac{16}{e^{3n}} by 2n^{2}+4n+10.
2n^{2}Y-8n-8+4\left(nY-4\right)+10Y=16e^{-3n}
Use the distributive property to multiply 2 by n^{2}Y-4n-4.
2n^{2}Y-8n-8+4nY-16+10Y=16e^{-3n}
Use the distributive property to multiply 4 by nY-4.
2n^{2}Y-8n-24+4nY+10Y=16e^{-3n}
Subtract 16 from -8 to get -24.
2n^{2}Y-24+4nY+10Y=16e^{-3n}+8n
Add 8n to both sides.
2n^{2}Y+4nY+10Y=16e^{-3n}+8n+24
Add 24 to both sides.
\left(2n^{2}+4n+10\right)Y=16e^{-3n}+8n+24
Combine all terms containing Y.
\left(2n^{2}+4n+10\right)Y=\frac{16}{e^{3n}}+8n+24
The equation is in standard form.
\frac{\left(2n^{2}+4n+10\right)Y}{2n^{2}+4n+10}=\frac{\frac{16}{e^{3n}}+8n+24}{2n^{2}+4n+10}
Divide both sides by 2n^{2}+4n+10.
Y=\frac{\frac{16}{e^{3n}}+8n+24}{2n^{2}+4n+10}
Dividing by 2n^{2}+4n+10 undoes the multiplication by 2n^{2}+4n+10.
Y=\frac{4\left(ne^{3n}+3e^{3n}+2\right)}{\left(n^{2}+2n+5\right)e^{3n}}
Divide 24+8n+\frac{16}{e^{3n}} by 2n^{2}+4n+10.