Solve for n
n = \frac{3}{2} = 1\frac{1}{2} = 1.5
n=0
Share
Copied to clipboard
2n^{2}+2n=5n
Use the distributive property to multiply 2 by n^{2}+n.
2n^{2}+2n-5n=0
Subtract 5n from both sides.
2n^{2}-3n=0
Combine 2n and -5n to get -3n.
n\left(2n-3\right)=0
Factor out n.
n=0 n=\frac{3}{2}
To find equation solutions, solve n=0 and 2n-3=0.
2n^{2}+2n=5n
Use the distributive property to multiply 2 by n^{2}+n.
2n^{2}+2n-5n=0
Subtract 5n from both sides.
2n^{2}-3n=0
Combine 2n and -5n to get -3n.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-3\right)±3}{2\times 2}
Take the square root of \left(-3\right)^{2}.
n=\frac{3±3}{2\times 2}
The opposite of -3 is 3.
n=\frac{3±3}{4}
Multiply 2 times 2.
n=\frac{6}{4}
Now solve the equation n=\frac{3±3}{4} when ± is plus. Add 3 to 3.
n=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
n=\frac{0}{4}
Now solve the equation n=\frac{3±3}{4} when ± is minus. Subtract 3 from 3.
n=0
Divide 0 by 4.
n=\frac{3}{2} n=0
The equation is now solved.
2n^{2}+2n=5n
Use the distributive property to multiply 2 by n^{2}+n.
2n^{2}+2n-5n=0
Subtract 5n from both sides.
2n^{2}-3n=0
Combine 2n and -5n to get -3n.
\frac{2n^{2}-3n}{2}=\frac{0}{2}
Divide both sides by 2.
n^{2}-\frac{3}{2}n=\frac{0}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}-\frac{3}{2}n=0
Divide 0 by 2.
n^{2}-\frac{3}{2}n+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{3}{2}n+\frac{9}{16}=\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
\left(n-\frac{3}{4}\right)^{2}=\frac{9}{16}
Factor n^{2}-\frac{3}{2}n+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
n-\frac{3}{4}=\frac{3}{4} n-\frac{3}{4}=-\frac{3}{4}
Simplify.
n=\frac{3}{2} n=0
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}