Evaluate
\frac{2n^{2}+4n+3}{n+1}
Expand
\frac{2n^{2}+4n+3}{n+1}
Share
Copied to clipboard
2n+2+\frac{1}{n+1}
Use the distributive property to multiply 2 by n+1.
\frac{\left(2n+2\right)\left(n+1\right)}{n+1}+\frac{1}{n+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2n+2 times \frac{n+1}{n+1}.
\frac{\left(2n+2\right)\left(n+1\right)+1}{n+1}
Since \frac{\left(2n+2\right)\left(n+1\right)}{n+1} and \frac{1}{n+1} have the same denominator, add them by adding their numerators.
\frac{2n^{2}+2n+2n+2+1}{n+1}
Do the multiplications in \left(2n+2\right)\left(n+1\right)+1.
\frac{2n^{2}+4n+3}{n+1}
Combine like terms in 2n^{2}+2n+2n+2+1.
2n+2+\frac{1}{n+1}
Use the distributive property to multiply 2 by n+1.
\frac{\left(2n+2\right)\left(n+1\right)}{n+1}+\frac{1}{n+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2n+2 times \frac{n+1}{n+1}.
\frac{\left(2n+2\right)\left(n+1\right)+1}{n+1}
Since \frac{\left(2n+2\right)\left(n+1\right)}{n+1} and \frac{1}{n+1} have the same denominator, add them by adding their numerators.
\frac{2n^{2}+2n+2n+2+1}{n+1}
Do the multiplications in \left(2n+2\right)\left(n+1\right)+1.
\frac{2n^{2}+4n+3}{n+1}
Combine like terms in 2n^{2}+2n+2n+2+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}