Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(m^{2}+\frac{1}{m^{2}}\right)m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Multiply both sides of the equation by m^{2}, the least common multiple of m^{2},m.
2\left(\frac{m^{2}m^{2}}{m^{2}}+\frac{1}{m^{2}}\right)m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
To add or subtract expressions, expand them to make their denominators the same. Multiply m^{2} times \frac{m^{2}}{m^{2}}.
2\times \frac{m^{2}m^{2}+1}{m^{2}}m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Since \frac{m^{2}m^{2}}{m^{2}} and \frac{1}{m^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{m^{4}+1}{m^{2}}m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Do the multiplications in m^{2}m^{2}+1.
\frac{2\left(m^{4}+1\right)}{m^{2}}m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Express 2\times \frac{m^{4}+1}{m^{2}} as a single fraction.
\frac{2\left(m^{4}+1\right)m^{2}}{m^{2}}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Express \frac{2\left(m^{4}+1\right)}{m^{2}}m^{2} as a single fraction.
2\left(m^{4}+1\right)-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Cancel out m^{2} in both numerator and denominator.
2m^{4}+2-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Use the distributive property to multiply 2 by m^{4}+1.
2m^{4}+2-3\left(\frac{xm}{m}-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{m}{m}.
2m^{4}+2-3\times \frac{xm-1}{m}m^{2}+m^{2}\left(-1\right)=0
Since \frac{xm}{m} and \frac{1}{m} have the same denominator, subtract them by subtracting their numerators.
2m^{4}+2+\frac{-3\left(xm-1\right)}{m}m^{2}+m^{2}\left(-1\right)=0
Express -3\times \frac{xm-1}{m} as a single fraction.
2m^{4}+2+\frac{-3\left(xm-1\right)m^{2}}{m}+m^{2}\left(-1\right)=0
Express \frac{-3\left(xm-1\right)}{m}m^{2} as a single fraction.
2m^{4}+2-3m\left(mx-1\right)+m^{2}\left(-1\right)=0
Cancel out m in both numerator and denominator.
2m^{4}+2-3xm^{2}+3m+m^{2}\left(-1\right)=0
Use the distributive property to multiply -3m by mx-1.
2-3xm^{2}+3m+m^{2}\left(-1\right)=-2m^{4}
Subtract 2m^{4} from both sides. Anything subtracted from zero gives its negation.
-3xm^{2}+3m+m^{2}\left(-1\right)=-2m^{4}-2
Subtract 2 from both sides.
-3xm^{2}+m^{2}\left(-1\right)=-2m^{4}-2-3m
Subtract 3m from both sides.
-3xm^{2}=-2m^{4}-2-3m-m^{2}\left(-1\right)
Subtract m^{2}\left(-1\right) from both sides.
-3xm^{2}=-2m^{4}-2-3m+m^{2}
Multiply -1 and -1 to get 1.
\left(-3m^{2}\right)x=-2m^{4}+m^{2}-3m-2
The equation is in standard form.
\frac{\left(-3m^{2}\right)x}{-3m^{2}}=\frac{-2m^{4}+m^{2}-3m-2}{-3m^{2}}
Divide both sides by -3m^{2}.
x=\frac{-2m^{4}+m^{2}-3m-2}{-3m^{2}}
Dividing by -3m^{2} undoes the multiplication by -3m^{2}.
x=\frac{2m^{2}}{3}-\frac{1}{3}+\frac{m+\frac{2}{3}}{m^{2}}
Divide -2m^{4}+m^{2}-3m-2 by -3m^{2}.