Solve for x
x=\frac{2m^{2}}{3}-\frac{1}{3}+\frac{1}{m}+\frac{2}{3m^{2}}
m\neq 0
Graph
Share
Copied to clipboard
2\left(m^{2}+\frac{1}{m^{2}}\right)m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Multiply both sides of the equation by m^{2}, the least common multiple of m^{2},m.
2\left(\frac{m^{2}m^{2}}{m^{2}}+\frac{1}{m^{2}}\right)m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
To add or subtract expressions, expand them to make their denominators the same. Multiply m^{2} times \frac{m^{2}}{m^{2}}.
2\times \frac{m^{2}m^{2}+1}{m^{2}}m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Since \frac{m^{2}m^{2}}{m^{2}} and \frac{1}{m^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{m^{4}+1}{m^{2}}m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Do the multiplications in m^{2}m^{2}+1.
\frac{2\left(m^{4}+1\right)}{m^{2}}m^{2}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Express 2\times \frac{m^{4}+1}{m^{2}} as a single fraction.
\frac{2\left(m^{4}+1\right)m^{2}}{m^{2}}-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Express \frac{2\left(m^{4}+1\right)}{m^{2}}m^{2} as a single fraction.
2\left(m^{4}+1\right)-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Cancel out m^{2} in both numerator and denominator.
2m^{4}+2-3\left(x-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
Use the distributive property to multiply 2 by m^{4}+1.
2m^{4}+2-3\left(\frac{xm}{m}-\frac{1}{m}\right)m^{2}+m^{2}\left(-1\right)=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{m}{m}.
2m^{4}+2-3\times \frac{xm-1}{m}m^{2}+m^{2}\left(-1\right)=0
Since \frac{xm}{m} and \frac{1}{m} have the same denominator, subtract them by subtracting their numerators.
2m^{4}+2+\frac{-3\left(xm-1\right)}{m}m^{2}+m^{2}\left(-1\right)=0
Express -3\times \frac{xm-1}{m} as a single fraction.
2m^{4}+2+\frac{-3\left(xm-1\right)m^{2}}{m}+m^{2}\left(-1\right)=0
Express \frac{-3\left(xm-1\right)}{m}m^{2} as a single fraction.
2m^{4}+2-3m\left(mx-1\right)+m^{2}\left(-1\right)=0
Cancel out m in both numerator and denominator.
2m^{4}+2-3xm^{2}+3m+m^{2}\left(-1\right)=0
Use the distributive property to multiply -3m by mx-1.
2-3xm^{2}+3m+m^{2}\left(-1\right)=-2m^{4}
Subtract 2m^{4} from both sides. Anything subtracted from zero gives its negation.
-3xm^{2}+3m+m^{2}\left(-1\right)=-2m^{4}-2
Subtract 2 from both sides.
-3xm^{2}+m^{2}\left(-1\right)=-2m^{4}-2-3m
Subtract 3m from both sides.
-3xm^{2}=-2m^{4}-2-3m-m^{2}\left(-1\right)
Subtract m^{2}\left(-1\right) from both sides.
-3xm^{2}=-2m^{4}-2-3m+m^{2}
Multiply -1 and -1 to get 1.
\left(-3m^{2}\right)x=-2m^{4}+m^{2}-3m-2
The equation is in standard form.
\frac{\left(-3m^{2}\right)x}{-3m^{2}}=\frac{-2m^{4}+m^{2}-3m-2}{-3m^{2}}
Divide both sides by -3m^{2}.
x=\frac{-2m^{4}+m^{2}-3m-2}{-3m^{2}}
Dividing by -3m^{2} undoes the multiplication by -3m^{2}.
x=\frac{2m^{2}}{3}-\frac{1}{3}+\frac{m+\frac{2}{3}}{m^{2}}
Divide -2m^{4}+m^{2}-3m-2 by -3m^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}