Solve for g
g=1.9
Share
Copied to clipboard
g-0.6=\frac{2.6}{2}
Divide both sides by 2.
g-0.6=\frac{26}{20}
Expand \frac{2.6}{2} by multiplying both numerator and the denominator by 10.
g-0.6=\frac{13}{10}
Reduce the fraction \frac{26}{20} to lowest terms by extracting and canceling out 2.
g=\frac{13}{10}+0.6
Add 0.6 to both sides.
g=\frac{13}{10}+\frac{3}{5}
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
g=\frac{13}{10}+\frac{6}{10}
Least common multiple of 10 and 5 is 10. Convert \frac{13}{10} and \frac{3}{5} to fractions with denominator 10.
g=\frac{13+6}{10}
Since \frac{13}{10} and \frac{6}{10} have the same denominator, add them by adding their numerators.
g=\frac{19}{10}
Add 13 and 6 to get 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}