Solve for a
a=\frac{2b+2d+1}{3}
Solve for b
b=\frac{3a}{2}-d-\frac{1}{2}
Share
Copied to clipboard
2b+2d=3a-1
Use the distributive property to multiply 2 by b+d.
3a-1=2b+2d
Swap sides so that all variable terms are on the left hand side.
3a=2b+2d+1
Add 1 to both sides.
\frac{3a}{3}=\frac{2b+2d+1}{3}
Divide both sides by 3.
a=\frac{2b+2d+1}{3}
Dividing by 3 undoes the multiplication by 3.
2b+2d=3a-1
Use the distributive property to multiply 2 by b+d.
2b=3a-1-2d
Subtract 2d from both sides.
2b=3a-2d-1
The equation is in standard form.
\frac{2b}{2}=\frac{3a-2d-1}{2}
Divide both sides by 2.
b=\frac{3a-2d-1}{2}
Dividing by 2 undoes the multiplication by 2.
b=\frac{3a}{2}-d-\frac{1}{2}
Divide 3a-1-2d by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}