Solve for a
a = \frac{\sqrt{1281} + 41}{4} \approx 19.197765084
a = \frac{41 - \sqrt{1281}}{4} \approx 1.302234916
Share
Copied to clipboard
2\left(a-5\right)^{2}=21a
Multiply a-5 and a-5 to get \left(a-5\right)^{2}.
2\left(a^{2}-10a+25\right)=21a
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-5\right)^{2}.
2a^{2}-20a+50=21a
Use the distributive property to multiply 2 by a^{2}-10a+25.
2a^{2}-20a+50-21a=0
Subtract 21a from both sides.
2a^{2}-41a+50=0
Combine -20a and -21a to get -41a.
a=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 2\times 50}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -41 for b, and 50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-41\right)±\sqrt{1681-4\times 2\times 50}}{2\times 2}
Square -41.
a=\frac{-\left(-41\right)±\sqrt{1681-8\times 50}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-41\right)±\sqrt{1681-400}}{2\times 2}
Multiply -8 times 50.
a=\frac{-\left(-41\right)±\sqrt{1281}}{2\times 2}
Add 1681 to -400.
a=\frac{41±\sqrt{1281}}{2\times 2}
The opposite of -41 is 41.
a=\frac{41±\sqrt{1281}}{4}
Multiply 2 times 2.
a=\frac{\sqrt{1281}+41}{4}
Now solve the equation a=\frac{41±\sqrt{1281}}{4} when ± is plus. Add 41 to \sqrt{1281}.
a=\frac{41-\sqrt{1281}}{4}
Now solve the equation a=\frac{41±\sqrt{1281}}{4} when ± is minus. Subtract \sqrt{1281} from 41.
a=\frac{\sqrt{1281}+41}{4} a=\frac{41-\sqrt{1281}}{4}
The equation is now solved.
2\left(a-5\right)^{2}=21a
Multiply a-5 and a-5 to get \left(a-5\right)^{2}.
2\left(a^{2}-10a+25\right)=21a
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-5\right)^{2}.
2a^{2}-20a+50=21a
Use the distributive property to multiply 2 by a^{2}-10a+25.
2a^{2}-20a+50-21a=0
Subtract 21a from both sides.
2a^{2}-41a+50=0
Combine -20a and -21a to get -41a.
2a^{2}-41a=-50
Subtract 50 from both sides. Anything subtracted from zero gives its negation.
\frac{2a^{2}-41a}{2}=-\frac{50}{2}
Divide both sides by 2.
a^{2}-\frac{41}{2}a=-\frac{50}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-\frac{41}{2}a=-25
Divide -50 by 2.
a^{2}-\frac{41}{2}a+\left(-\frac{41}{4}\right)^{2}=-25+\left(-\frac{41}{4}\right)^{2}
Divide -\frac{41}{2}, the coefficient of the x term, by 2 to get -\frac{41}{4}. Then add the square of -\frac{41}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{41}{2}a+\frac{1681}{16}=-25+\frac{1681}{16}
Square -\frac{41}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{41}{2}a+\frac{1681}{16}=\frac{1281}{16}
Add -25 to \frac{1681}{16}.
\left(a-\frac{41}{4}\right)^{2}=\frac{1281}{16}
Factor a^{2}-\frac{41}{2}a+\frac{1681}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{41}{4}\right)^{2}}=\sqrt{\frac{1281}{16}}
Take the square root of both sides of the equation.
a-\frac{41}{4}=\frac{\sqrt{1281}}{4} a-\frac{41}{4}=-\frac{\sqrt{1281}}{4}
Simplify.
a=\frac{\sqrt{1281}+41}{4} a=\frac{41-\sqrt{1281}}{4}
Add \frac{41}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}