Evaluate
2\left(a^{3}-13a+12\right)
Expand
2a^{3}-26a+24
Share
Copied to clipboard
\left(2a-6\right)\left(a-1\right)\left(a+4\right)
Use the distributive property to multiply 2 by a-3.
\left(2a^{2}-2a-6a+6\right)\left(a+4\right)
Apply the distributive property by multiplying each term of 2a-6 by each term of a-1.
\left(2a^{2}-8a+6\right)\left(a+4\right)
Combine -2a and -6a to get -8a.
2a^{3}+8a^{2}-8a^{2}-32a+6a+24
Apply the distributive property by multiplying each term of 2a^{2}-8a+6 by each term of a+4.
2a^{3}-32a+6a+24
Combine 8a^{2} and -8a^{2} to get 0.
2a^{3}-26a+24
Combine -32a and 6a to get -26a.
\left(2a-6\right)\left(a-1\right)\left(a+4\right)
Use the distributive property to multiply 2 by a-3.
\left(2a^{2}-2a-6a+6\right)\left(a+4\right)
Apply the distributive property by multiplying each term of 2a-6 by each term of a-1.
\left(2a^{2}-8a+6\right)\left(a+4\right)
Combine -2a and -6a to get -8a.
2a^{3}+8a^{2}-8a^{2}-32a+6a+24
Apply the distributive property by multiplying each term of 2a^{2}-8a+6 by each term of a+4.
2a^{3}-32a+6a+24
Combine 8a^{2} and -8a^{2} to get 0.
2a^{3}-26a+24
Combine -32a and 6a to get -26a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}