Solve for a
a=3-\frac{6}{b}
b\neq 0
Solve for b
b=\frac{6}{3-a}
a\neq 3
Share
Copied to clipboard
2a-6+b\left(3-a\right)=2a
Use the distributive property to multiply 2 by a-3.
2a-6+3b-ba=2a
Use the distributive property to multiply b by 3-a.
2a-6+3b-ba-2a=0
Subtract 2a from both sides.
-6+3b-ba=0
Combine 2a and -2a to get 0.
3b-ba=6
Add 6 to both sides. Anything plus zero gives itself.
-ba=6-3b
Subtract 3b from both sides.
\left(-b\right)a=6-3b
The equation is in standard form.
\frac{\left(-b\right)a}{-b}=\frac{6-3b}{-b}
Divide both sides by -b.
a=\frac{6-3b}{-b}
Dividing by -b undoes the multiplication by -b.
a=3-\frac{6}{b}
Divide 6-3b by -b.
2a-6+b\left(3-a\right)=2a
Use the distributive property to multiply 2 by a-3.
2a-6+3b-ba=2a
Use the distributive property to multiply b by 3-a.
-6+3b-ba=2a-2a
Subtract 2a from both sides.
-6+3b-ba=0
Combine 2a and -2a to get 0.
3b-ba=6
Add 6 to both sides. Anything plus zero gives itself.
\left(3-a\right)b=6
Combine all terms containing b.
\frac{\left(3-a\right)b}{3-a}=\frac{6}{3-a}
Divide both sides by 3-a.
b=\frac{6}{3-a}
Dividing by 3-a undoes the multiplication by 3-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}