Solve for a
a=3
a=-1
Share
Copied to clipboard
2\left(a^{2}-2a+1\right)-4=\left(a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a+2-4=\left(a-1\right)^{2}
Use the distributive property to multiply 2 by a^{2}-2a+1.
2a^{2}-4a-2=\left(a-1\right)^{2}
Subtract 4 from 2 to get -2.
2a^{2}-4a-2=a^{2}-2a+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a-2-a^{2}=-2a+1
Subtract a^{2} from both sides.
a^{2}-4a-2=-2a+1
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-4a-2+2a=1
Add 2a to both sides.
a^{2}-2a-2=1
Combine -4a and 2a to get -2a.
a^{2}-2a-2-1=0
Subtract 1 from both sides.
a^{2}-2a-3=0
Subtract 1 from -2 to get -3.
a+b=-2 ab=-3
To solve the equation, factor a^{2}-2a-3 using formula a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right). To find a and b, set up a system to be solved.
a=-3 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(a-3\right)\left(a+1\right)
Rewrite factored expression \left(a+a\right)\left(a+b\right) using the obtained values.
a=3 a=-1
To find equation solutions, solve a-3=0 and a+1=0.
2\left(a^{2}-2a+1\right)-4=\left(a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a+2-4=\left(a-1\right)^{2}
Use the distributive property to multiply 2 by a^{2}-2a+1.
2a^{2}-4a-2=\left(a-1\right)^{2}
Subtract 4 from 2 to get -2.
2a^{2}-4a-2=a^{2}-2a+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a-2-a^{2}=-2a+1
Subtract a^{2} from both sides.
a^{2}-4a-2=-2a+1
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-4a-2+2a=1
Add 2a to both sides.
a^{2}-2a-2=1
Combine -4a and 2a to get -2a.
a^{2}-2a-2-1=0
Subtract 1 from both sides.
a^{2}-2a-3=0
Subtract 1 from -2 to get -3.
a+b=-2 ab=1\left(-3\right)=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as a^{2}+aa+ba-3. To find a and b, set up a system to be solved.
a=-3 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(a^{2}-3a\right)+\left(a-3\right)
Rewrite a^{2}-2a-3 as \left(a^{2}-3a\right)+\left(a-3\right).
a\left(a-3\right)+a-3
Factor out a in a^{2}-3a.
\left(a-3\right)\left(a+1\right)
Factor out common term a-3 by using distributive property.
a=3 a=-1
To find equation solutions, solve a-3=0 and a+1=0.
2\left(a^{2}-2a+1\right)-4=\left(a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a+2-4=\left(a-1\right)^{2}
Use the distributive property to multiply 2 by a^{2}-2a+1.
2a^{2}-4a-2=\left(a-1\right)^{2}
Subtract 4 from 2 to get -2.
2a^{2}-4a-2=a^{2}-2a+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a-2-a^{2}=-2a+1
Subtract a^{2} from both sides.
a^{2}-4a-2=-2a+1
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-4a-2+2a=1
Add 2a to both sides.
a^{2}-2a-2=1
Combine -4a and 2a to get -2a.
a^{2}-2a-2-1=0
Subtract 1 from both sides.
a^{2}-2a-3=0
Subtract 1 from -2 to get -3.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Square -2.
a=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Multiply -4 times -3.
a=\frac{-\left(-2\right)±\sqrt{16}}{2}
Add 4 to 12.
a=\frac{-\left(-2\right)±4}{2}
Take the square root of 16.
a=\frac{2±4}{2}
The opposite of -2 is 2.
a=\frac{6}{2}
Now solve the equation a=\frac{2±4}{2} when ± is plus. Add 2 to 4.
a=3
Divide 6 by 2.
a=-\frac{2}{2}
Now solve the equation a=\frac{2±4}{2} when ± is minus. Subtract 4 from 2.
a=-1
Divide -2 by 2.
a=3 a=-1
The equation is now solved.
2\left(a^{2}-2a+1\right)-4=\left(a-1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a+2-4=\left(a-1\right)^{2}
Use the distributive property to multiply 2 by a^{2}-2a+1.
2a^{2}-4a-2=\left(a-1\right)^{2}
Subtract 4 from 2 to get -2.
2a^{2}-4a-2=a^{2}-2a+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
2a^{2}-4a-2-a^{2}=-2a+1
Subtract a^{2} from both sides.
a^{2}-4a-2=-2a+1
Combine 2a^{2} and -a^{2} to get a^{2}.
a^{2}-4a-2+2a=1
Add 2a to both sides.
a^{2}-2a-2=1
Combine -4a and 2a to get -2a.
a^{2}-2a=1+2
Add 2 to both sides.
a^{2}-2a=3
Add 1 and 2 to get 3.
a^{2}-2a+1=3+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-2a+1=4
Add 3 to 1.
\left(a-1\right)^{2}=4
Factor a^{2}-2a+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a-1=2 a-1=-2
Simplify.
a=3 a=-1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}