Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

2a^{10}\left(a^{2}\right)^{2}-\left(a^{2}\right)^{4}a^{6}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
2a^{10}a^{4}-\left(a^{2}\right)^{4}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2a^{14}-\left(a^{2}\right)^{4}a^{6}
To multiply powers of the same base, add their exponents. Add 10 and 4 to get 14.
2a^{14}-a^{8}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
2a^{14}-a^{14}
To multiply powers of the same base, add their exponents. Add 8 and 6 to get 14.
a^{14}
Combine 2a^{14} and -a^{14} to get a^{14}.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{10}\left(a^{2}\right)^{2}-\left(a^{2}\right)^{4}a^{6})
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{10}a^{4}-\left(a^{2}\right)^{4}a^{6})
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{14}-\left(a^{2}\right)^{4}a^{6})
To multiply powers of the same base, add their exponents. Add 10 and 4 to get 14.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{14}-a^{8}a^{6})
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
\frac{\mathrm{d}}{\mathrm{d}a}(2a^{14}-a^{14})
To multiply powers of the same base, add their exponents. Add 8 and 6 to get 14.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{14})
Combine 2a^{14} and -a^{14} to get a^{14}.
14a^{14-1}
The derivative of ax^{n} is nax^{n-1}.
14a^{13}
Subtract 1 from 14.