Evaluate
\frac{\left(a-2\right)\left(2a+1\right)\left(a^{2}+a-1\right)}{a^{2}}
Expand
2a^{2}-a-7+\frac{1}{a}+\frac{2}{a^{2}}
Share
Copied to clipboard
2\left(\frac{a^{2}a^{2}}{a^{2}}+\frac{1}{a^{2}}\right)-\left(a-\frac{1}{a}\right)-7
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{a^{2}}{a^{2}}.
2\times \frac{a^{2}a^{2}+1}{a^{2}}-\left(a-\frac{1}{a}\right)-7
Since \frac{a^{2}a^{2}}{a^{2}} and \frac{1}{a^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{a^{4}+1}{a^{2}}-\left(a-\frac{1}{a}\right)-7
Do the multiplications in a^{2}a^{2}+1.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\left(a-\frac{1}{a}\right)-7
Express 2\times \frac{a^{4}+1}{a^{2}} as a single fraction.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\left(\frac{aa}{a}-\frac{1}{a}\right)-7
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\frac{aa-1}{a}-7
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\frac{a^{2}-1}{a}-7
Do the multiplications in aa-1.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\frac{\left(a^{2}-1\right)a}{a^{2}}-7
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2} and a is a^{2}. Multiply \frac{a^{2}-1}{a} times \frac{a}{a}.
\frac{2\left(a^{4}+1\right)-\left(a^{2}-1\right)a}{a^{2}}-7
Since \frac{2\left(a^{4}+1\right)}{a^{2}} and \frac{\left(a^{2}-1\right)a}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{4}+2-a^{3}+a}{a^{2}}-7
Do the multiplications in 2\left(a^{4}+1\right)-\left(a^{2}-1\right)a.
\frac{2a^{4}+2-a^{3}+a}{a^{2}}-\frac{7a^{2}}{a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{a^{2}}{a^{2}}.
\frac{2a^{4}+2-a^{3}+a-7a^{2}}{a^{2}}
Since \frac{2a^{4}+2-a^{3}+a}{a^{2}} and \frac{7a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
2\left(\frac{a^{2}a^{2}}{a^{2}}+\frac{1}{a^{2}}\right)-\left(a-\frac{1}{a}\right)-7
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{a^{2}}{a^{2}}.
2\times \frac{a^{2}a^{2}+1}{a^{2}}-\left(a-\frac{1}{a}\right)-7
Since \frac{a^{2}a^{2}}{a^{2}} and \frac{1}{a^{2}} have the same denominator, add them by adding their numerators.
2\times \frac{a^{4}+1}{a^{2}}-\left(a-\frac{1}{a}\right)-7
Do the multiplications in a^{2}a^{2}+1.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\left(a-\frac{1}{a}\right)-7
Express 2\times \frac{a^{4}+1}{a^{2}} as a single fraction.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\left(\frac{aa}{a}-\frac{1}{a}\right)-7
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\frac{aa-1}{a}-7
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\frac{a^{2}-1}{a}-7
Do the multiplications in aa-1.
\frac{2\left(a^{4}+1\right)}{a^{2}}-\frac{\left(a^{2}-1\right)a}{a^{2}}-7
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2} and a is a^{2}. Multiply \frac{a^{2}-1}{a} times \frac{a}{a}.
\frac{2\left(a^{4}+1\right)-\left(a^{2}-1\right)a}{a^{2}}-7
Since \frac{2\left(a^{4}+1\right)}{a^{2}} and \frac{\left(a^{2}-1\right)a}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{4}+2-a^{3}+a}{a^{2}}-7
Do the multiplications in 2\left(a^{4}+1\right)-\left(a^{2}-1\right)a.
\frac{2a^{4}+2-a^{3}+a}{a^{2}}-\frac{7a^{2}}{a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{a^{2}}{a^{2}}.
\frac{2a^{4}+2-a^{3}+a-7a^{2}}{a^{2}}
Since \frac{2a^{4}+2-a^{3}+a}{a^{2}} and \frac{7a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}