Solve for a
a=5\sqrt{2}-3\approx 4.071067812
a=-5\sqrt{2}-3\approx -10.071067812
Share
Copied to clipboard
2a+6+a\left(a-6\right)+35=a\left(a-5\right)+a\left(a+7\right)
Use the distributive property to multiply 2 by a+3.
2a+6+a^{2}-6a+35=a\left(a-5\right)+a\left(a+7\right)
Use the distributive property to multiply a by a-6.
-4a+6+a^{2}+35=a\left(a-5\right)+a\left(a+7\right)
Combine 2a and -6a to get -4a.
-4a+41+a^{2}=a\left(a-5\right)+a\left(a+7\right)
Add 6 and 35 to get 41.
-4a+41+a^{2}=a^{2}-5a+a\left(a+7\right)
Use the distributive property to multiply a by a-5.
-4a+41+a^{2}=a^{2}-5a+a^{2}+7a
Use the distributive property to multiply a by a+7.
-4a+41+a^{2}=2a^{2}-5a+7a
Combine a^{2} and a^{2} to get 2a^{2}.
-4a+41+a^{2}=2a^{2}+2a
Combine -5a and 7a to get 2a.
-4a+41+a^{2}-2a^{2}=2a
Subtract 2a^{2} from both sides.
-4a+41-a^{2}=2a
Combine a^{2} and -2a^{2} to get -a^{2}.
-4a+41-a^{2}-2a=0
Subtract 2a from both sides.
-6a+41-a^{2}=0
Combine -4a and -2a to get -6a.
-a^{2}-6a+41=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 41}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 41 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 41}}{2\left(-1\right)}
Square -6.
a=\frac{-\left(-6\right)±\sqrt{36+4\times 41}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-6\right)±\sqrt{36+164}}{2\left(-1\right)}
Multiply 4 times 41.
a=\frac{-\left(-6\right)±\sqrt{200}}{2\left(-1\right)}
Add 36 to 164.
a=\frac{-\left(-6\right)±10\sqrt{2}}{2\left(-1\right)}
Take the square root of 200.
a=\frac{6±10\sqrt{2}}{2\left(-1\right)}
The opposite of -6 is 6.
a=\frac{6±10\sqrt{2}}{-2}
Multiply 2 times -1.
a=\frac{10\sqrt{2}+6}{-2}
Now solve the equation a=\frac{6±10\sqrt{2}}{-2} when ± is plus. Add 6 to 10\sqrt{2}.
a=-5\sqrt{2}-3
Divide 6+10\sqrt{2} by -2.
a=\frac{6-10\sqrt{2}}{-2}
Now solve the equation a=\frac{6±10\sqrt{2}}{-2} when ± is minus. Subtract 10\sqrt{2} from 6.
a=5\sqrt{2}-3
Divide 6-10\sqrt{2} by -2.
a=-5\sqrt{2}-3 a=5\sqrt{2}-3
The equation is now solved.
2a+6+a\left(a-6\right)+35=a\left(a-5\right)+a\left(a+7\right)
Use the distributive property to multiply 2 by a+3.
2a+6+a^{2}-6a+35=a\left(a-5\right)+a\left(a+7\right)
Use the distributive property to multiply a by a-6.
-4a+6+a^{2}+35=a\left(a-5\right)+a\left(a+7\right)
Combine 2a and -6a to get -4a.
-4a+41+a^{2}=a\left(a-5\right)+a\left(a+7\right)
Add 6 and 35 to get 41.
-4a+41+a^{2}=a^{2}-5a+a\left(a+7\right)
Use the distributive property to multiply a by a-5.
-4a+41+a^{2}=a^{2}-5a+a^{2}+7a
Use the distributive property to multiply a by a+7.
-4a+41+a^{2}=2a^{2}-5a+7a
Combine a^{2} and a^{2} to get 2a^{2}.
-4a+41+a^{2}=2a^{2}+2a
Combine -5a and 7a to get 2a.
-4a+41+a^{2}-2a^{2}=2a
Subtract 2a^{2} from both sides.
-4a+41-a^{2}=2a
Combine a^{2} and -2a^{2} to get -a^{2}.
-4a+41-a^{2}-2a=0
Subtract 2a from both sides.
-6a+41-a^{2}=0
Combine -4a and -2a to get -6a.
-6a-a^{2}=-41
Subtract 41 from both sides. Anything subtracted from zero gives its negation.
-a^{2}-6a=-41
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}-6a}{-1}=-\frac{41}{-1}
Divide both sides by -1.
a^{2}+\left(-\frac{6}{-1}\right)a=-\frac{41}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}+6a=-\frac{41}{-1}
Divide -6 by -1.
a^{2}+6a=41
Divide -41 by -1.
a^{2}+6a+3^{2}=41+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+6a+9=41+9
Square 3.
a^{2}+6a+9=50
Add 41 to 9.
\left(a+3\right)^{2}=50
Factor a^{2}+6a+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+3\right)^{2}}=\sqrt{50}
Take the square root of both sides of the equation.
a+3=5\sqrt{2} a+3=-5\sqrt{2}
Simplify.
a=5\sqrt{2}-3 a=-5\sqrt{2}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}