Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2\left(a^{2}+2a+1\right)-\left(2a-3\right)\left(2a+3\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+1\right)^{2}.
2a^{2}+4a+2-\left(2a-3\right)\left(2a+3\right)
Use the distributive property to multiply 2 by a^{2}+2a+1.
2a^{2}+4a+2-\left(\left(2a\right)^{2}-9\right)
Consider \left(2a-3\right)\left(2a+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2a^{2}+4a+2-\left(2^{2}a^{2}-9\right)
Expand \left(2a\right)^{2}.
2a^{2}+4a+2-\left(4a^{2}-9\right)
Calculate 2 to the power of 2 and get 4.
2a^{2}+4a+2-4a^{2}+9
To find the opposite of 4a^{2}-9, find the opposite of each term.
-2a^{2}+4a+2+9
Combine 2a^{2} and -4a^{2} to get -2a^{2}.
-2a^{2}+4a+11
Add 2 and 9 to get 11.
2\left(a^{2}+2a+1\right)-\left(2a-3\right)\left(2a+3\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(a+1\right)^{2}.
2a^{2}+4a+2-\left(2a-3\right)\left(2a+3\right)
Use the distributive property to multiply 2 by a^{2}+2a+1.
2a^{2}+4a+2-\left(\left(2a\right)^{2}-9\right)
Consider \left(2a-3\right)\left(2a+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2a^{2}+4a+2-\left(2^{2}a^{2}-9\right)
Expand \left(2a\right)^{2}.
2a^{2}+4a+2-\left(4a^{2}-9\right)
Calculate 2 to the power of 2 and get 4.
2a^{2}+4a+2-4a^{2}+9
To find the opposite of 4a^{2}-9, find the opposite of each term.
-2a^{2}+4a+2+9
Combine 2a^{2} and -4a^{2} to get -2a^{2}.
-2a^{2}+4a+11
Add 2 and 9 to get 11.