Solve for x
x=-\frac{4}{5}=-0.8
x=-\frac{1}{3}\approx -0.333333333
Graph
Share
Copied to clipboard
18x^{2}+12x+2=\left(3x+1\right)\left(x-2\right)
Use the distributive property to multiply 2 by 9x^{2}+6x+1.
18x^{2}+12x+2=3x^{2}-5x-2
Use the distributive property to multiply 3x+1 by x-2 and combine like terms.
18x^{2}+12x+2-3x^{2}=-5x-2
Subtract 3x^{2} from both sides.
15x^{2}+12x+2=-5x-2
Combine 18x^{2} and -3x^{2} to get 15x^{2}.
15x^{2}+12x+2+5x=-2
Add 5x to both sides.
15x^{2}+17x+2=-2
Combine 12x and 5x to get 17x.
15x^{2}+17x+2+2=0
Add 2 to both sides.
15x^{2}+17x+4=0
Add 2 and 2 to get 4.
a+b=17 ab=15\times 4=60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 15x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
1,60 2,30 3,20 4,15 5,12 6,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Calculate the sum for each pair.
a=5 b=12
The solution is the pair that gives sum 17.
\left(15x^{2}+5x\right)+\left(12x+4\right)
Rewrite 15x^{2}+17x+4 as \left(15x^{2}+5x\right)+\left(12x+4\right).
5x\left(3x+1\right)+4\left(3x+1\right)
Factor out 5x in the first and 4 in the second group.
\left(3x+1\right)\left(5x+4\right)
Factor out common term 3x+1 by using distributive property.
x=-\frac{1}{3} x=-\frac{4}{5}
To find equation solutions, solve 3x+1=0 and 5x+4=0.
18x^{2}+12x+2=\left(3x+1\right)\left(x-2\right)
Use the distributive property to multiply 2 by 9x^{2}+6x+1.
18x^{2}+12x+2=3x^{2}-5x-2
Use the distributive property to multiply 3x+1 by x-2 and combine like terms.
18x^{2}+12x+2-3x^{2}=-5x-2
Subtract 3x^{2} from both sides.
15x^{2}+12x+2=-5x-2
Combine 18x^{2} and -3x^{2} to get 15x^{2}.
15x^{2}+12x+2+5x=-2
Add 5x to both sides.
15x^{2}+17x+2=-2
Combine 12x and 5x to get 17x.
15x^{2}+17x+2+2=0
Add 2 to both sides.
15x^{2}+17x+4=0
Add 2 and 2 to get 4.
x=\frac{-17±\sqrt{17^{2}-4\times 15\times 4}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 17 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 15\times 4}}{2\times 15}
Square 17.
x=\frac{-17±\sqrt{289-60\times 4}}{2\times 15}
Multiply -4 times 15.
x=\frac{-17±\sqrt{289-240}}{2\times 15}
Multiply -60 times 4.
x=\frac{-17±\sqrt{49}}{2\times 15}
Add 289 to -240.
x=\frac{-17±7}{2\times 15}
Take the square root of 49.
x=\frac{-17±7}{30}
Multiply 2 times 15.
x=-\frac{10}{30}
Now solve the equation x=\frac{-17±7}{30} when ± is plus. Add -17 to 7.
x=-\frac{1}{3}
Reduce the fraction \frac{-10}{30} to lowest terms by extracting and canceling out 10.
x=-\frac{24}{30}
Now solve the equation x=\frac{-17±7}{30} when ± is minus. Subtract 7 from -17.
x=-\frac{4}{5}
Reduce the fraction \frac{-24}{30} to lowest terms by extracting and canceling out 6.
x=-\frac{1}{3} x=-\frac{4}{5}
The equation is now solved.
18x^{2}+12x+2=\left(3x+1\right)\left(x-2\right)
Use the distributive property to multiply 2 by 9x^{2}+6x+1.
18x^{2}+12x+2=3x^{2}-5x-2
Use the distributive property to multiply 3x+1 by x-2 and combine like terms.
18x^{2}+12x+2-3x^{2}=-5x-2
Subtract 3x^{2} from both sides.
15x^{2}+12x+2=-5x-2
Combine 18x^{2} and -3x^{2} to get 15x^{2}.
15x^{2}+12x+2+5x=-2
Add 5x to both sides.
15x^{2}+17x+2=-2
Combine 12x and 5x to get 17x.
15x^{2}+17x=-2-2
Subtract 2 from both sides.
15x^{2}+17x=-4
Subtract 2 from -2 to get -4.
\frac{15x^{2}+17x}{15}=-\frac{4}{15}
Divide both sides by 15.
x^{2}+\frac{17}{15}x=-\frac{4}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}+\frac{17}{15}x+\left(\frac{17}{30}\right)^{2}=-\frac{4}{15}+\left(\frac{17}{30}\right)^{2}
Divide \frac{17}{15}, the coefficient of the x term, by 2 to get \frac{17}{30}. Then add the square of \frac{17}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{17}{15}x+\frac{289}{900}=-\frac{4}{15}+\frac{289}{900}
Square \frac{17}{30} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{17}{15}x+\frac{289}{900}=\frac{49}{900}
Add -\frac{4}{15} to \frac{289}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{17}{30}\right)^{2}=\frac{49}{900}
Factor x^{2}+\frac{17}{15}x+\frac{289}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{30}\right)^{2}}=\sqrt{\frac{49}{900}}
Take the square root of both sides of the equation.
x+\frac{17}{30}=\frac{7}{30} x+\frac{17}{30}=-\frac{7}{30}
Simplify.
x=-\frac{1}{3} x=-\frac{4}{5}
Subtract \frac{17}{30} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}