Solve for x
x=-119
Graph
Share
Copied to clipboard
16-6x-\left(2^{7}-7x\right)=12-\left(5-2x\right)
Use the distributive property to multiply 2 by 8-3x.
16-6x-\left(128-7x\right)=12-\left(5-2x\right)
Calculate 2 to the power of 7 and get 128.
16-6x-128-\left(-7x\right)=12-\left(5-2x\right)
To find the opposite of 128-7x, find the opposite of each term.
16-6x-128+7x=12-\left(5-2x\right)
The opposite of -7x is 7x.
-112-6x+7x=12-\left(5-2x\right)
Subtract 128 from 16 to get -112.
-112+x=12-\left(5-2x\right)
Combine -6x and 7x to get x.
-112+x=12-5-\left(-2x\right)
To find the opposite of 5-2x, find the opposite of each term.
-112+x=12-5+2x
The opposite of -2x is 2x.
-112+x=7+2x
Subtract 5 from 12 to get 7.
-112+x-2x=7
Subtract 2x from both sides.
-112-x=7
Combine x and -2x to get -x.
-x=7+112
Add 112 to both sides.
-x=119
Add 7 and 112 to get 119.
x=-119
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}