Solve for x
x = \frac{11}{10} = 1\frac{1}{10} = 1.1
Graph
Share
Copied to clipboard
12x-8-\left(3-2x\right)=1-2\left(3x-5\right)
Use the distributive property to multiply 2 by 6x-4.
12x-8-3-\left(-2x\right)=1-2\left(3x-5\right)
To find the opposite of 3-2x, find the opposite of each term.
12x-8-3+2x=1-2\left(3x-5\right)
The opposite of -2x is 2x.
12x-11+2x=1-2\left(3x-5\right)
Subtract 3 from -8 to get -11.
14x-11=1-2\left(3x-5\right)
Combine 12x and 2x to get 14x.
14x-11=1-6x+10
Use the distributive property to multiply -2 by 3x-5.
14x-11=11-6x
Add 1 and 10 to get 11.
14x-11+6x=11
Add 6x to both sides.
20x-11=11
Combine 14x and 6x to get 20x.
20x=11+11
Add 11 to both sides.
20x=22
Add 11 and 11 to get 22.
x=\frac{22}{20}
Divide both sides by 20.
x=\frac{11}{10}
Reduce the fraction \frac{22}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}