Solve for x (complex solution)
x=-\frac{6}{5}+\frac{2}{5}i=-1.2+0.4i
x=-\frac{6}{5}-\frac{2}{5}i=-1.2-0.4i
Graph
Share
Copied to clipboard
2\left(6x+2\right)=-\left(4+5x^{2}\right)
Combine 5x and x to get 6x.
12x+4=-\left(4+5x^{2}\right)
Use the distributive property to multiply 2 by 6x+2.
12x+4=-4-5x^{2}
To find the opposite of 4+5x^{2}, find the opposite of each term.
12x+4-\left(-4\right)=-5x^{2}
Subtract -4 from both sides.
12x+4+4=-5x^{2}
The opposite of -4 is 4.
12x+2\times 4=-5x^{2}
Combine 4 and 4 to get 2\times 4.
12x+2\times 4+5x^{2}=0
Add 5x^{2} to both sides.
12x+8+5x^{2}=0
Multiply 2 and 4 to get 8.
5x^{2}+12x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 5\times 8}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 12 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 5\times 8}}{2\times 5}
Square 12.
x=\frac{-12±\sqrt{144-20\times 8}}{2\times 5}
Multiply -4 times 5.
x=\frac{-12±\sqrt{144-160}}{2\times 5}
Multiply -20 times 8.
x=\frac{-12±\sqrt{-16}}{2\times 5}
Add 144 to -160.
x=\frac{-12±4i}{2\times 5}
Take the square root of -16.
x=\frac{-12±4i}{10}
Multiply 2 times 5.
x=\frac{-12+4i}{10}
Now solve the equation x=\frac{-12±4i}{10} when ± is plus. Add -12 to 4i.
x=-\frac{6}{5}+\frac{2}{5}i
Divide -12+4i by 10.
x=\frac{-12-4i}{10}
Now solve the equation x=\frac{-12±4i}{10} when ± is minus. Subtract 4i from -12.
x=-\frac{6}{5}-\frac{2}{5}i
Divide -12-4i by 10.
x=-\frac{6}{5}+\frac{2}{5}i x=-\frac{6}{5}-\frac{2}{5}i
The equation is now solved.
2\left(6x+2\right)=-\left(4+5x^{2}\right)
Combine 5x and x to get 6x.
12x+4=-\left(4+5x^{2}\right)
Use the distributive property to multiply 2 by 6x+2.
12x+4=-4-5x^{2}
To find the opposite of 4+5x^{2}, find the opposite of each term.
12x+4+5x^{2}=-4
Add 5x^{2} to both sides.
12x+5x^{2}=-4-4
Subtract 4 from both sides.
12x+5x^{2}=-8
Subtract 4 from -4 to get -8.
5x^{2}+12x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+12x}{5}=-\frac{8}{5}
Divide both sides by 5.
x^{2}+\frac{12}{5}x=-\frac{8}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=-\frac{8}{5}+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{5}x+\frac{36}{25}=-\frac{8}{5}+\frac{36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{5}x+\frac{36}{25}=-\frac{4}{25}
Add -\frac{8}{5} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{5}\right)^{2}=-\frac{4}{25}
Factor x^{2}+\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{-\frac{4}{25}}
Take the square root of both sides of the equation.
x+\frac{6}{5}=\frac{2}{5}i x+\frac{6}{5}=-\frac{2}{5}i
Simplify.
x=-\frac{6}{5}+\frac{2}{5}i x=-\frac{6}{5}-\frac{2}{5}i
Subtract \frac{6}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}